題目列表(包括答案和解析)
不等式選講
若函數(shù)的最小值為2,求自變量的取值范圍
不等式選講。若函數(shù)的最小值為2,求自變量的取值范圍
一、選擇題:本大題共10小題,每小題5分,共50分。
1.B 2.D 3.A 4.A 5.B 6.C 7.C 8.C 9.A 10.B
二、填空題:本大題共5小題,每小題4分,共20分。
11.5 12. 13. 14.7 15.
三、解答題:本大題共6小題,共80分。
16.解:(I)由三角函數(shù)的定義可知
又為正三角形,
(Ⅱ)
圓的面積為。
該點落在內(nèi)的概率
17.解:(I)依題意,每個月更新的車輛數(shù)構(gòu)成一個首項為,公差為的等差數(shù)列,設(shè)第
個月更新的車輛數(shù)為,則
該市的出租車總數(shù)(輛)
(Ⅱ)依題意,每個月更新的車輛數(shù)構(gòu)成一個首項為,公比為1.1的等比數(shù)列,則第
個月更新的車輛數(shù),設(shè)至少需要個月才能更新完畢,
個月更新的車輛總數(shù),
即,由參數(shù)數(shù)據(jù)可得
故以此速度進行更新,至少需要37個月才能更新完該市所有的出租車
18.解(I),為等腰直角三角形,
(Ⅱ)如圖建立空間直角坐標(biāo)系,則
設(shè)平面的一個法向量為,
則有 得
平面的一個法向量
而的一個法向量
平面與平面所成的角的余弦值
(Ⅲ),
設(shè)平面的法向量為,則有
平面的一個法向量為
若要使得面,則要,即
解得, 當(dāng)時, 面
19.解法一:
(I)設(shè)橢圓方程為,由題意知
故橢圓方程為
(Ⅱ)由(I)得,所以,設(shè)的方程為()
代入,得
設(shè)則
由,
當(dāng)時,有成立。
(Ⅲ)在軸上存在定點,使得、、三點共線。
依題意知,直線BC的方程為,
令,則
的方程為、在直線上,
在軸上存在定點,使得、、三點共線。
解法二:(I)同解法一。
(Ⅱ)由(I)得,所以。
設(shè)的方程為
代入,得
設(shè)則
當(dāng)時,有成立。
(Ⅲ)在軸上存在定點,使得、、三點共線。
設(shè)存在使得、、三點共線,則,
,
即
,。
所以,存在,使得、、三點共線。
20.解:(I)
當(dāng)時,
由或。
x
(0,1)
1
+
―
單調(diào)遞增
極大值
單調(diào)遞減
時,,無極小值。
(Ⅱ)存在單調(diào)遞減區(qū)間,
在內(nèi)有解,即在內(nèi)有解。
若,則,在單調(diào)遞增,不存在單調(diào)遞減區(qū)間;
若,則函數(shù)的圖象是開口向上的拋物線,且恒過點(0,1),要
使在內(nèi)有解,則應(yīng)有
或,由于,;
若,則函數(shù)的圖象是開口向下的拋物線,且恒過點(0,1),
在內(nèi)一定有解。
綜上,或。
(Ⅲ)依題意:,假設(shè)結(jié)論不成立,
則有
①―②,得
由③得,
即
設(shè),則,
令
,在(0,1)上為增函數(shù)。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com