設是方程的兩個不相同的實數根.那么過點和點的直線與圓的位置關系是A.相交 B.相切 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線l的傾斜角為α(α90°).在l上任取兩個不同的點,不妨設向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據正切函數的定義得

,

這就是《數學2》中已經得到的斜率公式.上述推導過程比《數學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:

(1)過點,平行于向量的直線方程;

(2)向量(AB)與直線的關系;

(3)設直線的方程分別是

,

,

那么,,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

(4)到直線的距離公式如何推導?

查看答案和解析>>


(本小題滿分14分)
已知函數,當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>

 

(本小題滿分14分)

已知函數,當時,取得極小值.

(1)求,的值;

(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:

①直線與曲線相切且至少有兩個切點;

②對任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設是方程的實數根,若對于定義域中任意的,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

已知函數,當時,取得極小值.

(1)求,的值;

(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:

①直線與曲線相切且至少有兩個切點;

②對任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>


(本小題滿分14分)
已知函數,當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>

一、選擇題:

1―5:BABDD            6―10:BABDC             11―12:AC

二、填空題:

13、1                   14、                     15、                  16、①③④

三、解答題:

17、解:(Ⅰ)         ……………………(2分)

    即

………………………………………………………………(4分)

由于,故…………………………………………………(6分)

(Ⅱ)由,

…………………………………………………………(8分)

…………(10分)

當且僅當,即時,取得最大值.

所以的最大值為,此時為等腰三角形.

18、解析:(1)抽取的4根鋼管中恰有2根長度相同的概率為:

……………………………………………………………………(3分)

(2)新焊接成鋼管的長度的可能值有7種,最短的可能值為5m,最長的可能值為11m.

=5m與=11m時的概率為;

=6m與=10m時的概率為;tesoon

=7m與=9m時的概率為;

=8m時的概率為.…………………………………………(9分)

的分布列為:

5

6

7

8

9

10

11

…………………………(12分)

19、(1)圓,當時,點在圓上,故當且僅當直線過圓心C時滿足.

圓心坐標為(1,1),…………………………………………………………(3分)

(2)由,消去可得.

………………①

,則……………………………………(5分)

,即=0.

,,即.

.

…………………………………………………………………………(9分)

(當且僅當時取=)

   即………………②

由①②知,

直線的傾斜角取值范圍為:…………………………………………………(12分)

20、解:(1)設,

在[-1,1]上是增函數………………………………………(3分)

(2),解得:…………………………(7分)

(3)對所有恒成立,等價于的最大值不大于.

在[-1,1]上是增函數,在[-1,1]上的最大值為

,得

,是關于的一次函數,要使恒成立,

只需即可,解得:.

21、解析:(1)設

處有極值,

在點(0,-3)處的切線平行于

…………………………………………………………………(4分)

(2)設

時,(遞減)

時,(遞增)

曲線上任意兩點的連線的斜率恒大于.

解不等式.

…………………………………………………………(8分)

(3)設,則為[0,1]上的增函數

的值域是[-4. ].…………………………(12分)

22、解析:(1)圓彼此外切,令為圓的半徑,

,

兩邊平方并化簡得

由題意得,圓的半徑,

……………………………………………………………………(5分)

數列是以為首項,以2為公差的等差數列,

所以.………………………………………………(8分)

(2),……………………………………………………(10分)

因為

…………………………………………………(12分)

所以………………………………………………………………………………(14分)

文本框: tesoon                                                                                                                               天星教育網(www.tesoon.com) 版權所有

天星教育網(www.tesoon.com) 版權所有

天星教育網(www.tesoon.com) 版權所有

Tesoon.com

 天星版權

天?星om

 

文本框: tesoon

    <optgroup id="cllwa"><sub id="cllwa"><noframes id="cllwa"></noframes></sub></optgroup>

    天?星om

    天?星om

    Tesoon.com

     天星版權

     

     


    同步練習冊答案