已知數(shù)列 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項和為Sn,a1=1,a2=2,且點(Sn,Sn+1)在直線y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求證:{an}是等比數(shù)列;
(Ⅲ)記Tn為數(shù)列{Sn}的前n項和,求T10的值.

查看答案和解析>>

已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log3(a5+a7+a9)的值是(  )
A、-5
B、-
1
5
C、5
D、
1
5

查看答案和解析>>

已知數(shù)列an的前n項和Sn滿足條件2Sn=3(an-1),其中n∈N*
(1)求證:數(shù)列an成等比數(shù)列;
(2)設(shè)數(shù)列bn滿足bn=log3an.若 tn=
1bnbn+1
,求數(shù)列tn的前n項和.

查看答案和解析>>

已知數(shù)列{an}的前n項和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)令cn=
n+1
n
an,Tn=c1+c2+…+cn
,試比較Tn
5n
2n+1
的大小,并予以證明.

查看答案和解析>>

已知數(shù)列{an}的前n項和Sn,對一切正整數(shù)n,點(n,Sn)都在函數(shù)f(x)=2x+2-4的圖象上.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an•log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),,即,

       ,,

       ,∴.                                  5分

  

18.解法一:證明:連結(jié)OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過O作,連結(jié)AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小為.   ---------------------------------------------------8分

       (III)解:設(shè)點O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點O到平面ACD的距離為.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O(shè)為原點,如圖建立空間直角坐標(biāo)系,

則     

       ,

.  ------------6分

設(shè)平面ABC的法向量,

,

設(shè)夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設(shè)平面ACD的法向量為,又

       .   -----------------------------------11分

設(shè)夾角為,

   則     -       設(shè)O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

 

19.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,且,

故取出的4個球均為黑球的概率為.…….6分

(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件互斥,

,

故取出的4個球中恰有1個紅球的概率為...12分

20. 解:(Ⅰ)由已知,當(dāng)時,   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

 

(II)

時,是減函數(shù),則恒成立,得

 

22.解(I)設(shè)

                   

(3分)

 

 (Ⅱ)(1)當(dāng)直線的斜率不存在時,方程為

      

       …………(4分)

  (2)當(dāng)直線的斜率存在時,設(shè)直線的方程為,

       設(shè),

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 


同步練習(xí)冊答案