直線到與它平行平面的距離:一條直線上的任一點到與它平行的平面的距離,叫做這條直線到平面的距離 如果一條直線平行與平面,則直線上的各點到平面的垂線段相等,即各點到的距離相等,垂線段小于或等于上任意一點與平面內任一點間的距離, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系內的向量都可以用一有序實數(shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線l的傾斜角為α(α90°).在l上任取兩個不同的點,,不妨設向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據正切函數(shù)的定義得

,

這就是《數(shù)學2》中已經得到的斜率公式.上述推導過程比《數(shù)學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:

(1)過點,平行于向量的直線方程;

(2)向量(A,B)與直線的關系;

(3)設直線的方程分別是

,

,

那么,,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

(4)到直線的距離公式如何推導?

查看答案和解析>>

以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2
③平面內到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.
其中正確命題的標號是
②④
②④

查看答案和解析>>

以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2
③平面內到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.
其中正確命題的標號是______.

查看答案和解析>>

以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;
③平面內到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.
其中正確命題的標號是______.

查看答案和解析>>

以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x,y)與圓x2+y2=r2相切的直線方程是;
③平面內到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.
其中正確命題的標號是   

查看答案和解析>>


同步練習冊答案