解:(1)已知EFAB,那么翻折后.顯然有PEEF,又PEAE,從而PE面ABC,即PE為四棱錐的高. 四棱錐的底面積 而△BEF與△BDC相似.那么 = . = 則 =63=9 故四棱錐的體積V(x)=Sh=9 = (0<x<3) = 3-x2(0<x<3), 令V’(x)=0得x=6 當x∈>0,V(x)單調(diào)遞增,x∈(6.3)時V’單調(diào)遞減, 因此x=6時. Vmax= V(6)=12 (3)過F作AC的平行線交AE于點G.連結FG.PG.則EG=6.EF=.GF=PF=.PG=. 查看更多

 

題目列表(包括答案和解析)

(1)已知不等式ax2+bx+c>0的解集為{x|α<x<β,α∈R+},求不等式cx2+bx+a<0的解集.

(2)已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},滿足A∩B=,A∪B={x|-5<x≤2},求實數(shù)a,b的值.

查看答案和解析>>

學生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均銳角
-
π
2
<α-β<
π
2

α-β=±
π
3

請判斷上述解答是否正確?若不正確請予以指正.

查看答案和解析>>

24、給定集合An={1,2,3,…,n},映射f:An→An,同時滿足:
①當i,j∈An,i≠j時,f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.
則稱映射f:An→An是一個“優(yōu)映射”.
例如:用表1表示的映射f:A3→A3是一個“優(yōu)映射”.
表1   表2
1 2 3   1 2 3 4 5
2 3 1            
已知表2表示的映射f:A5-A5是一個“優(yōu)映射”,且方程f(i)=i的解恰有3個,則這樣的“優(yōu)映射”的個數(shù)是
4

查看答案和解析>>

1已知函數(shù)f(x)=ax+b
1+x2
(x≥0)
,g(x)=2
b(1+x2)
,a,b∈R,且g(0)=2,f(
3
)=2-
3

(Ⅰ)求f(x)、g(x)的解析式;
(Ⅱ)h(x)為定義在R上的奇函數(shù),且滿足下列性質:①h(x+2)=-h(x)對一切實數(shù)x恒成立;②當0≤x≤1時h(x)=
1
2
[-f(x)+log2g(x)]

(。┣螽-1≤x<3時,函數(shù)h(x)的解析式;
(ⅱ)求方程h(x)=-
1
2
在區(qū)間[0,2012]上的解的個數(shù).

查看答案和解析>>

下列命題中,正確的命題序號為

①方程組
2x+y=0
x-y=3
的解集為{1,2}
②集合C={
6
3-x
∈z|x∈N*
}={1,2,4,5,6,9}
③f(x)=
x-3
+
2-x
是函數(shù)
④若定義域為[a-1,2a]的函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),則f(0)=1
⑤已知集合A={1,2,3},B={2,3,4,5},則滿足S⊆A且S∩≠∅,B的集合S的個數(shù)為10個
⑥函數(shù)y=
2
x
在定義域內(nèi)是減函數(shù).

查看答案和解析>>


同步練習冊答案