向量運算的主要應用在于如下幾個方面: (1)判斷空間兩條直線平行或垂直, (2)求空間兩點間的距離, (3)求兩條異面直線所成的角. 查看更多

 

題目列表(包括答案和解析)

(2010•上海)在平面上,給定非零向量
b
,對任意向量
a
,定義
a′
=
a
-
2(
a
b
)
|
b
|2
b

(1)若
a
=(2,3),
b
=(-1,3),求
a′

(2)若
b
=(2,1),證明:若位置向量
a
的終點在直線Ax+By+C=0上,則位置向量
a′
的終點也在一條直線上;
(3)已知存在單位向量
b
,當位置向量
a
的終點在拋物線C:x2=y上時,位置向量
a′
終點總在拋物線C′:y2=x上,曲線C和C′關于直線l對稱,問直線l與向量
b
滿足什么關系?

查看答案和解析>>

(上海春卷22)在平面上,給定非零向量
b
,對任意向量
a
,定義
a′
=
a
-
2(
a
b
)
|b|
2
b

(1)若
a
=(2,3),
b
=(-1,3)
,求
a′

(2)若
b
=(2,1)
,證明:若位置向量
a
的終點在直線Ax+By+C=0上,則位置向量
a′
的終點也在一條直線上.

查看答案和解析>>

隨機數的含義是什么?隨機數的主要應用是什么?

查看答案和解析>>

在平面上,給定非零向量
b
,對任意向量
a
,定義
a′
=
a
-
2(
a
b
)
|
b
|2
b

(1)若
a
=(2,3),
b
=(-1,3),求
a′
;
(2)若
b
=(2,1),證明:若位置向量
a
的終點在直線Ax+By+C=0上,則位置向量
a′
的終點也在一條直線上;
(3)已知存在單位向量
b
,當位置向量
a
的終點在拋物線C:x2=y上時,位置向量
a′
終點總在拋物線C′:y2=x上,曲線C和C′關于直線l對稱,問直線l與向量
b
滿足什么關系?

查看答案和解析>>

出于應用方便和數學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數λ,μ,使得
a
=λ
e1
e2
,我們就把實數對(λ,μ)稱作向量
a
的坐標.并依據這樣的定義研究了向量加法、減法、數乘向量及數量積的坐標運算公式.現在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
j
>=
π
3
,
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數乘向量及數量積的坐標運算公式.

查看答案和解析>>


同步練習冊答案