題目列表(包括答案和解析)
設(shè)橢圓的左、右焦點(diǎn)分別為、,是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為,則橢圓的離心率為( )
A、 B、 C、 D、
A. | B. | C. | D. |
設(shè)橢圓的左、右焦點(diǎn)分別為、,是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為,則橢圓的離心率為( )
A、 B、 C、 D、
橢圓的左、右焦點(diǎn)分別為、,若橢圓上恰好有6個不同的點(diǎn),使得為等腰三角形,則橢圓的離心率的取值范圍是( )
A. B. C. D.
橢圓的左、右焦點(diǎn)分別為、,若橢圓上恰好有6個不同的點(diǎn),使得為等腰三角形,則橢圓的離心率的取值范圍是( )
A. | B. | C. | D. |
一、選擇題:本大題共12小題,每題5分,滿分60分,在每小題給出的四個選項中,只有一項是符合題目要求的。
1.B 2.C 3.B 4.D 5.C 6.D 7.D 8.B 9.A 10.B 11.A 12.
二、填空題:本大題共4小題,每小題5分
13.27 14.20 15.2 16.①④
三、解答題(解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.(本小題共10分)
解:(I)
故函數(shù)的周期為 ………………………………………….5分
(II)
又
函數(shù)的值域?yàn)?sub>………………….10分
18.(本小題共12分)
解:(1)3名志愿者每人任選一天參加社區(qū)服務(wù),共有53種不同的結(jié)果,這些結(jié)果出現(xiàn)的可能性都相等. ………………1分
設(shè)“3名志愿者恰好連續(xù)3天參加社區(qū)服務(wù)工作”為事件A,
則該事件共包括種不同的結(jié)果, ………………3分
所以 ………………5分
答:3名志愿者恰好連續(xù)3天參加社區(qū)服務(wù)工作的概率為 ………………6分
(II)解法1:隨機(jī)變量ξ的可能取值為0,1,2,3 ………………7分
隨機(jī)變量ξ的分布列為:
ξ
0
1
2
3
P
……………………12分
解法2:每名志愿者在5月1日參加社區(qū)服務(wù)的概率均為……7分
則三名志愿者在5月1日參加社區(qū)服務(wù)的人數(shù)
………………11分
隨機(jī)變量ξ的分布列為:
ξ
0
1
2
3
P
………………12分
19.(本小題共12分)
方法1
(I)證明:在直角梯形ABCD中,∵AB//CD,∠BAD=90°,AD=DC=2
∴∠ADC=90°,且 ………………1分
取AB的中點(diǎn)E,連結(jié)CE.
由題意可知,四邊形AECD為正方形,所以AE=CE=2,
又
則△ABC為等腰直角三角形,
所以AC⊥BC, 又因?yàn)镻A⊥平面ABCD,則AC為PC在平面ABCD內(nèi)的射影,BC平面ABCD,
由三垂線定理得,BC⊥PC ……………………4分
(II)由(I)可知,BC⊥PC,BC⊥AC,PC∩AC=C.
所以BC⊥平面PAC, ……………………4分
PC是PB在平面APC內(nèi)的射影,所以∠CPB是PB與平面PAC所成的角. ……5分
又, ………………6分
………………7分
………………8分
(III)由(II)可知,BC⊥平面PAC,BC平面PEC,
所以平面PBC⊥平面PAC,
過A點(diǎn)在平面PAC內(nèi)作AF⊥PC于E,所以AF⊥平面PBC,
則AF的長即為點(diǎn)A到平面PBC的距離. ………………9分
在直角三角形PAC中,PA=2,AC=, ………………10分
………………11分
所以 ………………12分
方法2:
∵AP⊥平面ABCD,∠BAD=90°
∴以A為原點(diǎn),AD、AB、AP分別為x、y、z軸,建立空間直角坐標(biāo)系
∵PA=AD=DC=2,AB=4.
………………2分
(I)
………………3分
………………4分
(II)
設(shè) ………………6分
即PB與平面PAC所成角的正弦值為 ………………8分
(III)由
設(shè) ………………10分
=
∴點(diǎn)A到平面PBC的距離為 ………………12分
20.(本小題共12分)
解:(I)令,得(舍去負(fù)的),
同理,令可得................................................4分
(II)
…………………8分
(Ⅲ)令
………………..12分
21.(本小題共12分)
解:(I)由
當(dāng)時,當(dāng)時,,
的單調(diào)遞增區(qū)間是(-1,0),單調(diào)遞減區(qū)間是(0,)….6分
(II)設(shè)
則
當(dāng)時,在上是減函數(shù);
當(dāng)時,在上是增函數(shù)。
………………………………………………………..12分
22.(本小題共12分)
解:(I)如圖,由題意得,
∴所求的橢圓方程為 ………………3分
(III)設(shè)
若以MP為直徑的圓恒過DP,MQ的交點(diǎn),
則恒成立. ………………10分
由(II)可知 ………………10分
∴存在Q(0,0),使得以MP為直徑的圓恒過直線DP,MQ的交點(diǎn). …………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com