函數(shù) (x∈[0, ])的反函數(shù)的解析式是 ,反函數(shù)的定義域是 . 查看更多

 

題目列表(包括答案和解析)

我們知道,y=ax(a>0且a≠1)與y=logax(a>0且a≠1)互為反函數(shù)。只要把其中一個(gè)進(jìn)行指對(duì)互化,就可以得到它的反函數(shù)的解析式。任意一個(gè)函數(shù)y=f(x),將x用y表示出來(lái)能否得到它的反函數(shù)?據(jù)函數(shù)的定義:對(duì)于自變量x的每一個(gè)值y都有唯一確定的值與之對(duì)應(yīng),如果存在反函數(shù),應(yīng)是對(duì)于y的每一個(gè)值,x都有唯一確定的值與之對(duì)應(yīng),據(jù)此探究下列函數(shù)是否存在反函數(shù)?若是,反函數(shù)是什么?若否,為什么?
(1)y=2x+1;
(2)y=
(3)y=x2;
(4)y=

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式(x∈R,x≠0),其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求常數(shù)a的值;
(2)當(dāng)f(x)為奇函數(shù)時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱,求y=g(x)的解析式并求其值域;
(3)對(duì)于(2)中的函數(shù)y=g(x),不等式g2(x)+2g(x)+t•g(x)>-2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=loga(x+b)(a>0且a≠1),f(x)的反函數(shù)f-1(x)的圖象與直線y=x的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為0、1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)點(diǎn)(x,y)是y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)(
x
3
,
y
2
)
是函數(shù)y=g(x)上的點(diǎn),求函數(shù)y=g(x)的解析式:
(Ⅲ)在(Ⅱ)的條件下,當(dāng)g(
kx
3
)
-f(x)≥0時(shí),求x的取值范圍(其中k是常數(shù),且k≥
3
2
).

查看答案和解析>>

設(shè)函數(shù)f(x)=loga(x+b)(a>0且a≠1),f(x)的反函數(shù)f-1(x)的圖象與直線y=x的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為0、1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)點(diǎn)(x,y)是y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)是函數(shù)y=g(x)上的點(diǎn),求函數(shù)y=g(x)的解析式:
(Ⅲ)在(Ⅱ)的條件下,當(dāng)g-f(x)≥0時(shí),求x的取值范圍(其中k是常數(shù),且k≥).

查看答案和解析>>

設(shè)函數(shù)f(x)=loga(x+b)(a>0且a≠1),f(x)的反函數(shù)f-1(x)的圖象與直線y=x的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為0、1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)點(diǎn)(x,y)是y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)(
x
3
y
2
)
是函數(shù)y=g(x)上的點(diǎn),求函數(shù)y=g(x)的解析式:
(Ⅲ)在(Ⅱ)的條件下,當(dāng)g(
kx
3
)
-f(x)≥0時(shí),求x的取值范圍(其中k是常數(shù),且k≥
3
2
).

查看答案和解析>>


同步練習(xí)冊(cè)答案