已知函數(shù)在區(qū)間上有最大值是3.那么.此函數(shù)在上的最小值為( ) A . B . C. D. 查看更多

 

題目列表(包括答案和解析)

(本大題13分)已知函數(shù)為常數(shù))
(1)若在區(qū)間上單調(diào)遞減,求的取值范圍;
(2)若與直線相切:
(ⅰ)求的值;
(ⅱ)設(shè)處取得極值,記點M (,),N(,),P(), , 若對任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點,試確定的最小值,并證明你的結(jié)論.

查看答案和解析>>

(本大題13分)已知函數(shù)為常數(shù))
(1)若在區(qū)間上單調(diào)遞減,求的取值范圍;
(2)若與直線相切:
(。┣的值;
(ⅱ)設(shè)處取得極值,記點M (,),N(,),P(), , 若對任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點,試確定的最小值,并證明你的結(jié)論.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[-3,3]上的最大值和最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[-3,3]上的最大值和最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[-3,3]上的最大值和最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案