21.解:. (1)2+(2)2得: 由(1)得:----(3) 由(2)得:----(4) 得: 查看更多

 

題目列表(包括答案和解析)

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標(biāo)系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標(biāo)著0號的有5個,標(biāo)著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

19C.解:由,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C

調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關(guān)系,得到以下數(shù)據(jù)。

晚上

白天

合計

男嬰

24

31

55

女嬰

8

26

34

合計

32

57

89

試問有多大把握認(rèn)為嬰兒的性別與出生時間有關(guān)系?

查看答案和解析>>

19C.解:由,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關(guān)系,得到以下數(shù)據(jù)。
 
晚上
白天
合計
男嬰
24
31
55
女嬰
8
26
34
合計
32
57
89
試問有多大把握認(rèn)為嬰兒的性別與出生時間有關(guān)系?

查看答案和解析>>

已知Pn(an,bn)都在直線L:y=2x+2上,P1為直線L與x軸的交點,數(shù)列{an}成等差數(shù)列,公差為1(n∈N*)

(Ⅰ)求數(shù)列{an},{bn}的通項公式

(Ⅱ)若f(n)=問是否存在k∈N*,使得f(k+5)=2f(k)-2成立,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)的定義域為D,且f(x)同時滿足以下條件:

①f(x)在D上單調(diào)遞增或單調(diào)遞減;

②存在區(qū)間[a,b]D,使得f(x)在[a,b]上的值域是[a,b],那么我們把函數(shù)f(x)(x∈D)叫做閉函數(shù).

(1)求閉函數(shù)y=-x3符合條件2的區(qū)間[a,b].

(2)判斷函數(shù)y=2x-lgx是不是閉函數(shù)?若是,請說明理由,并找出區(qū)間[a,b];若不是,請說明理由.

(3)若y=k+是閉函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案