17.已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

   (1)若上單調(diào)遞增,且,求證: w.w.w.k.s.5.u.c.o.m        

   (2)若處取得極值,且在時(shí),函數(shù)的圖象在直線的下方,求c的取值范圍.

查看答案和解析>>

(本小題滿分12分)

      已知函數(shù)是常數(shù),且當(dāng)時(shí),函數(shù)

取得極值w.w.w.k.s.5.u.c.o.m              

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)

的取值范圍

查看答案和解析>>

(本小題滿分12分)已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn)。

查看答案和解析>>

(本小題滿分12分)已知函數(shù)(其中)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域. 

查看答案和解析>>

一、選擇題

20080422

二、填空題

13.2    14.   15.   16.①③④

三、解答題

17.解:(1)……………………3分

……………………6分

(2)因?yàn)?sub>

………………9分

……………………12分

文本框:  18.方法一:

(1)證明:連結(jié)BD,

∵D分別是AC的中點(diǎn),PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=,

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

∵VP―EBC=VE―PBC

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點(diǎn)E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

    <dl id="2h125"><rp id="2h125"></rp></dl>

    1. <del id="2h125"></del>

      過點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

      原點(diǎn),DE為x軸,DF為y軸,

      DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

      則D(0,0,0),P(0,0,),

      E(),B=(

      設(shè)上平面PAB的一個(gè)法向量,

      則由

      這時(shí),……………………6分

      顯然,是平面ABC的一個(gè)法向量.

      ∴二面角P―AB―C的大小是……………………8分

      (3)解:

      設(shè)平面PBC的一個(gè)法向量,

      是平面PBC的一個(gè)法向量……………………10分

      ∴點(diǎn)E到平面PBC的距離為………………12分

      19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷售總金額為:

         (2)

      ……………………3分

      當(dāng)

      當(dāng)x=50時(shí),

      即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷售總最大.……………………6分

      (2)由(1)

      如果上漲價(jià)格能使銷假售總金額增加,

      則有……………………8分

      即x>0時(shí),

      注意到m>0

        ∴   ∴

      ∴m的取值范圍是(0,1)…………………………12分

      20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

      當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

      當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

      由已知可得………5分

      解得無(wú)意義.

      因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

      (2)由已知可設(shè)直線l的方程為……………………8分

      則AB所在直線為……………………9分

      代入拋物線方程………………①

      的中點(diǎn)為

      代入直線l的方程得:………………10分

      又∵對(duì)于①式有:

      解得m>-1,

      l在y軸上截距的取值范圍為(3,+)……………………12分

      21.解:(1)由

      ……………………3分

      又由已知

      ∴數(shù)列是以3為首項(xiàng),以-1為公差的等差數(shù)列,且…………6分

      (2)∵……………………8分

      …………①

      …………②………………10分

      ②―①得

      ……………………12分

      22.解:(1)和[0,2]上有相反的單調(diào)性,

      的一個(gè)極值點(diǎn),故

         (2)令

      因?yàn)?sub>和[4,5]上有相反的單調(diào)性,

      和[4,5]上有相反的符號(hào),

      ……………………7分

      假設(shè)在點(diǎn)M在點(diǎn)M的切線斜率為3b,則

      故不存在點(diǎn)M在點(diǎn)M的切線斜率為3b………………9分

         (3)∵的圖象過點(diǎn)B(2,0),

      設(shè),依題意可令

      ……………………12分

      ∴當(dāng)

      ……………………14分

       


      同步練習(xí)冊(cè)答案