2.先高.這里主要是指在考試的后半段時要特別注重時間效益.如兩道題都會做.先做高分題.后做低分題.以使時間不足時少失分,到了最后十分鐘.也應(yīng)對那些拿不下來的題目就高分題“分段得分 .以增加在時間不足前提下的得分. 查看更多

 

題目列表(包括答案和解析)

(2009•金山區(qū)二模)(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2
(u+v)2
2
;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
1
2

證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4
,
當(dāng)x=-
1
2
時,u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當(dāng)x=-
1
2
時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+2+,
當(dāng)x=-時,u有最大值,umax=,顯然u沒有最小值,
∴當(dāng)x=-時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2數(shù)學(xué)公式;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于數(shù)學(xué)公式
證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>


同步練習(xí)冊答案