以曲線y上的任意一點(diǎn)為圓心作圓與直線x+2=0相切.則這些圓必過一定點(diǎn).則這一定點(diǎn)的坐標(biāo)是 . 查看更多

 

題目列表(包括答案和解析)

已知雙曲線E:
x2
a2
-
y2
b2
=1
的焦距為4,以原點(diǎn)為圓心,實(shí)半軸長為半徑的圓和直線x-y+
6
=0
相切.
(Ⅰ) 求雙曲線E的方程;
(Ⅱ)已知點(diǎn)F為雙曲線E的左焦點(diǎn),試問在x軸上是否存在一定點(diǎn)M,過點(diǎn)M任意作一條直線l交雙曲線E于P,Q兩點(diǎn),使
FP
FQ
為定值?若存在,求出此定值和所有的定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

(2013•牡丹江一模)已知雙曲線E:
x2
a2
-
y2
b2
=1
的焦距為4,以原點(diǎn)為圓心,實(shí)半軸長為半徑的圓和直線x-y+
6
=0
相切.
(Ⅰ) 求雙曲線E的方程;
(Ⅱ)已知點(diǎn)F為雙曲線E的左焦點(diǎn),試問在x軸上是否存在一定點(diǎn)M,過點(diǎn)M任意作一條直線l交雙曲線E于P,Q兩點(diǎn),使
FP
FQ
為定值?若存在,求出此定值和所有的定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

在直角坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)Py軸作垂線段PP′,P′為垂足.

   (1)求線段PP′中點(diǎn)M的軌跡C的方程;

   (2)過點(diǎn)Q(-2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn),且以為方向向量的直線上一動(dòng)點(diǎn),滿足O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

在直角坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)Py軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)Q(-2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn),且以為方向向量的直線上一動(dòng)點(diǎn),滿足O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

在直角坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)Py軸作垂線段為垂足.

(1)求線段中點(diǎn)M的軌跡C的方程;

(2)過點(diǎn)Q(-2,0)作直線l與曲線C交于AB兩點(diǎn),設(shè)N是過點(diǎn)(-,0),且以為方向向量的直線上一動(dòng)點(diǎn),滿足(O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案