討論函數(shù)的連續(xù)性,適當(dāng)定義某點(diǎn)的函數(shù)值.使在區(qū)間內(nèi)連續(xù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
ax2+1
bx+c
(a,b,c∈R)
是奇函數(shù),又f(1)=2,f(2)=
5
2

(1)求a,b,c的值;
(2)當(dāng)x∈(0,+∞)時(shí),討論函數(shù)的單調(diào)性,并寫出證明過程.

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對(duì)任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax-1-lnx(a∈R)
①當(dāng)a=
12
時(shí),求函數(shù)在[1,e]上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對(duì)?x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

已知a≥0,函數(shù)f(x)=(x2-2ax)ex
(1)當(dāng)a=0時(shí)討論函數(shù)的單調(diào)性;
(2)當(dāng)x取何值時(shí),f(x)取最小值,證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊(cè)答案