在類比此性質(zhì).如下圖.在得到的正確結(jié)論為 . 查看更多

 

題目列表(包括答案和解析)

類比此性質(zhì),如下圖,在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為__________________________.

查看答案和解析>>

類比此性質(zhì),如下圖,在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為________________.

查看答案和解析>>

類比此性質(zhì),如下圖,在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為__________________________.

查看答案和解析>>

(08年泉州一中適應(yīng)性練習文)在類比此性質(zhì),如下圖,在得到的正確結(jié)論為__________________________________

 

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中, ,

     同理,…………………………5分

又GM=

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點Q滿足題設(shè)條件,

    1. ∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

      ∴AD⊥AB,AD⊥PA.

      又AB∩PA=A,

      ∴AD⊥平面PAB. ……………………………………8分

      又∵E,F(xiàn)分別是PA,PD中點,

      ∴EF∥AD,∴EF⊥平面PAB.

      又EF面EFQ,

      ∴面EFQ⊥面PAB. …………………………………9分

      過A作AT⊥ER于T,則AT⊥平面EFQ,

      ∴AT就是點A到平面EFQ的距離. ……………………………………………10分

      設(shè)

          在, …………………………11分

          解得

          故存在點Q,當CQ=時,點A到平面EFQ的距離為0.8. ……………………… 12分

      解法二:建立如圖所示的空間直角坐標系A(chǔ)-xyz,

      則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

        1.    (1)證明:

               …………………………1分

              設(shè)

              即,

             

               ……………2分

              ,

              ∴PB∥平面EFG. …………………………………………………………………… 3分

             (2)解:∵,…………………………………………4分

              ,……………………… 6分

           

          20.(本小題滿分12分)

          解:(1)數(shù)列{an}的前n項和

                                                …………2分

          ,

                                     …………3分

          是正項等比數(shù)列,

           

          ,                                               …………4分

          公比,                                                                                    …………5分

          數(shù)列                                  …………6分

             (2)解法一:,

                                  …………8分

          ,

          ,                                      …………10分

          故存在正整數(shù)M,使得對一切M的最小值為2…………12分

             (2)解法二:,

          ,         …………8分

          ,

          函數(shù)…………10分

          對于

          故存在正整數(shù)M,使得對一切恒成立,M的最小值為2…………12

          21.解:  1)設(shè)橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

          易知右焦點F的坐標為(),

          據(jù)題意有AB所在的直線方程為:   ②                     ………3分

          由①,②有:         ③

          設(shè),弦AB的中點,由③及韋達定理有:

           

          所以,即為所求。                                    ………5分

          2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立。設(shè),由1)中各點的坐標有:

          ,所以

          。                                   ………7分

          又點在橢圓C上,所以有整理為。           ④

          由③有:。所以

             ⑤

          又A?B在橢圓上,故有                ⑥

          將⑤,⑥代入④可得:。                                ………11分

          對于橢圓上的每一個點,總存在一對實數(shù),使等式成立,而

          在直角坐標系中,取點P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然

          也就是:對于橢圓C上任意一點M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

           

          22.  …1分

          上無極值點      ……………………………2分

          時,令,隨x的變化情況如下表:

          x

          0

          遞增

          極大值

          遞減

          從上表可以看出,當時,有唯一的極大值點

          (2)解:當時,處取得極大值

          此極大值也是最大值。

          要使恒成立,只需

          的取值范圍是     …………………………………………………8分

          (3)證明:令p=1,由(2)知:

                  …………………………………………………………10分

                   ……………………………………………14分


          同步練習冊答案