19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數的圖象經過三點.

(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數列{an}中, 

   (Ⅰ)求數列{an}的通項公式an;

   (Ⅱ)設數列{an}的前n項和為Sn,證明:

   (Ⅲ)設,證明:對任意的正整數n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數,其中a為常數.

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     CBDCB  DBAAC  AA

 

二.填空題   13. 1 ;   14. 8 ;    15. ;   16. -1

 

三、解答題

17.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.

由f()=,得+-=,∴b=1,…………2分

∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).…………4分

(Ⅱ)由f(x)=sin(2x+).

又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),

∴函數f(x)的圖象右移后對應的函數可成為奇函數.…………12分

 

18.解:(I)一次射擊后,三人射中目標分別記為事件A1,A2,A3

由題意知A1,A2,A3互相獨立,且,…………2分

.…………5分

∴一次射擊后,三人都射中目標的概率是.…………6分

(Ⅱ)證明:一次射擊后,射中目標的次數可能取值為0、1、2、3,相應的沒有射中目標的的次數可能取值為3、2、1、0,所以可能取值為1、3, …………9分

)+

.………12分

 

19.解:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ………………1分

    ∴與平面A1C1CA所成角,

.

與平面A1C1CA所成角為.………3分

(Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結BM,

    ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內的射影,

    ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點,

    ∴CG=2,DC=1 在直角三角形CDG中,,.……7分

    即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)證明:∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA內的射影為C1F,∵F為AC中點,

∴C1F⊥A1D,∴EF⊥A1D.……………………11分

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

文本框:  解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分別為C1C、B1C1的中點.

建立如圖所示的坐標系得:

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,設平面A1BD的法向量為

  .…………6分

平面ACC1A1­的法向量為=(1,0,0),.………7分

即二面角B―A1D―A的大小為.…………………8分

(Ⅲ)證明:∵F為AC的中點,∴F(0,1,0),.……10分

由(Ⅱ)知平面A1BD的一個法向量為,∴//n . ……11分

EF⊥平面A1BD.…………………………………12分   

 

20.解:(Ⅰ) 據題意:

.

   兩式相減,有:,…………3分

 .…………4分

又由S2=解得. …………5分

是以為首項,為公比的等比數列,∴.…………6分

 (Ⅱ)

 ………8分

…………12分

 

21.解: 因為當∈[-1,0]時,2a+43222233

所以當時,==2a-43,

    ∴………………………………………2分

(Ⅰ)由題設上為增函數,∴恒成立,

恒成立,于是,,從而

的取值范圍是………………………………6分

(Ⅱ)因為偶函數,故只需研究函數=2-43的最大值.

     令=2a-122=0,得.……………8分

,即0<≤6,則

       ,

       故此時不存在符合題意的;……………10分

       若>1,即>6,則上為增函數,于是

      令2-4=12,故=8.  綜上,存在8滿足題設.………………12分

22.解: (Ⅰ)依題意,由余弦定理得:

, ……2分

即即

  

.

,即.  …………4分

(當動點與兩定點共線時也符合上述結論)

動點的軌跡為以為焦點,實軸長為的雙曲線.

所以,軌跡Q的方程為.     …………6分

(Ⅱ)假設存在定點,使為常數.

(1)當直線 不與軸垂直時,

設直線的方程為,代入整理得:

.             …………7分

由題意知,

,,則,.…………8分

于是,   …………9分

.                …………11分

要使是與無關的常數,當且僅當,此時. …12分

(2)當直線軸垂直時,可得點,,

時,.    …13分

故在軸上存在定點,使為常數.     …………14分

 


同步練習冊答案