題目列表(包括答案和解析)
(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n()個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
1. (本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n()個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有個(gè)圓盤依其半徑大小,大的在下,小的在上套在A桿上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。
現(xiàn)用表示將n個(gè)圓盤全部從A柱上移到C上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)寫出,并求出
(2)記,求和;
(其中表示所有的積的和)
(3)證明:
第 Ⅰ 卷(共50分)
一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
B
B
C
C
A
B
D
D
C
A
二、填空題:
11. 20 12. 4 13. 22 14. 24 15.
三、解答題:
16.解:(1)由得
………………………………………2分
…………………………6分
(2)
…………………………10分
……………12分
17.解:(1)取SA的中點(diǎn)H,連結(jié)EH,BH
E是SD的中點(diǎn)
四邊形EFBH為平行四邊形
又
………………………4分
(2)
以為原點(diǎn),為軸,為軸,為軸,如圖所示建立直角坐標(biāo)系,
則
設(shè)是平面的法向量,則
取
則到平面的距離為 …………………………8分
(3)設(shè),則
設(shè)是平面的法向量,則
取
由 得
, 故存在G點(diǎn)滿足要求,. …………………………12分
18.解:
由已知,得
…………………………3分
(1)
由,得或
由,得
的遞增區(qū)間是,遞減區(qū)間是……………………6分
(2)不等式即
由,得
又
在內(nèi)最大值為6,最小值為-14
的取值范圍為 …………………………12分
19.解:(1) …………………………2分
隨的增大而增大
當(dāng)時(shí), …………………………6分
(2)連續(xù)操作四次“獲勝”的概率記作,則
當(dāng)且僅當(dāng) 即時(shí)取“=”
由 ,得
當(dāng)時(shí),“獲勝”的概率最大. …………………………12分
20.解:設(shè)A、B的坐標(biāo)分別為 的方程為:
(1)N點(diǎn)坐標(biāo)
所求的方程為: …………………………6分
(2)由 得
, ,
設(shè)點(diǎn)坐標(biāo)為 , 顯然
…………………………13分
21.解:(1)欲使為等差數(shù)列,只需
即
令 得
存在實(shí)數(shù),使是等差數(shù)列. …………………………3分
(2)
是等差數(shù)列,
…………………………5分
故 …………………………8分
(3)當(dāng)時(shí),
又,
左式. …………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com