18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得,

……………………12分

17.解:(1)因為……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為!6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結OC,

ABD為等邊三角形,O為BD的中點,∴AO

垂直BD。………………………………………………………………(1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD。…………………………………………………(3分)

   (2)過O作OE垂直BC于E,連結AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角!7分)

       在RtAEO中,AO=,OE=,

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設點O到面ACD的距離為∵VO-ACD=VA-OCD,

。

       在ACD中,AD=CD=2,AC=,

。

       ∴點O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O為原點,如圖建立空間直角坐標系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

      • <li id="lhoin"></li>

        1.        ,

                 由。設夾角為,

                 則

                 ∴二面角A―BC―D的大小為arccos。…………………………………………(8分)

             (3)解:設平面ACD的法向量為

          。………………………………(11分)

          夾角為,則

          設O到平面ACD的距離為,

          ,

          ∴O到平面ACD的距離為!12分)19.解:(1).

          …共線,該直線過點P1(a,a),

          斜率為……………………3分

          時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是

          于是

          …………………………7分

          (2)結合圖象,當

          ,……………………10分

          而當

          ,

          故當1<a>2時,存在正整數(shù)n,使得……………………13分

          20.解:(1)

          設橢圓C的標準方程為,

          為正三角形,

          a=2b,結合

          ∴所求為……………………2分

          (2)設P(x,y)M(),N(),

          直線l的方程為得,

          ……………………4分

          ………………6分

          且滿足上述方程,

          ………………7分

          (3)由(2)得, 

          …………………………9分

          ……………………10分

          面積的最大值為…………………………13分

          21.解:(1)由

          即可求得……………………3分

          (2)當>0,

          不等式…(5分)

           

          由于

          ……………………7分

          ,

          于是由;………………9分

          (3)由(2)知,

          在上式中分別令x=再三式作和即得

          所以有……………………13分

           

           


          同步練習冊答案
          <p id="lhoin"></p>
          <td id="lhoin"></td>