21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨立地在半小時內(nèi)解決它,計算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運輸成本由燃料費和其余費用組成,輪船每小時的燃料費用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費用為每小時960元.

(1)把全程運輸成本y(元)表示為速度x(海里/小時)的函數(shù);

(2)為了使全程運輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點,都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得

……………………12分

17.解:(1)因為……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為。………………………(6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點,∴AO

垂直BD。………………………………………………………………(1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角。………………………………………(7分)

       在RtAEO中,AO=,OE=

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點O到面ACD的距離為∵VO-ACD=VA-OCD

。

       在ACD中,AD=CD=2,AC=,

。

。

       ∴點O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點,如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

  • <delect id="edel4"></delect>
    <ol id="edel4"></ol>

           ,

           由。設(shè)夾角為,

           則

           ∴二面角A―BC―D的大小為arccos。…………………………………………(8分)

       (3)解:設(shè)平面ACD的法向量為

    。………………………………(11分)

    設(shè)夾角為,則

    設(shè)O到平面ACD的距離為

    ,

    ∴O到平面ACD的距離為!12分)19.解:(1).

    …共線,該直線過點P1(a,a),

    斜率為……………………3分

    當(dāng)時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是

    于是

    …………………………7分

    (2)結(jié)合圖象,當(dāng)

    ,……………………10分

    而當(dāng)

    ,

    故當(dāng)1<a>2時,存在正整數(shù)n,使得……………………13分

    20.解:(1)

    設(shè)橢圓C的標(biāo)準(zhǔn)方程為,

    為正三角形,

    a=2b,結(jié)合

    ∴所求為……………………2分

    (2)設(shè)P(x,y)M(),N(),

    直線l的方程為得,

    ……………………4分

    ………………6分

    且滿足上述方程,

    ………………7分

    (3)由(2)得, 

    …………………………9分

    ……………………10分

    設(shè)

    面積的最大值為…………………………13分

    21.解:(1)由

    即可求得……………………3分

    (2)當(dāng)>0,

    不等式…(5分)

     

    由于

    ……………………7分

    當(dāng)

    當(dāng)

    當(dāng)

    ,

    于是由;………………9分

    (3)由(2)知,

    在上式中分別令x=再三式作和即得

    所以有……………………13分

     

     


    同步練習(xí)冊答案