上為減函數(shù).則p是q成立的 A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

已知m>0,給出以下兩個命題:
命題p:函數(shù)y=mx在R上單調(diào)遞減;
命題q:?x∈R,不等式x+|x-2m|>1恒成立.
若p∧q是假命題,p∨q是真命題,則m的取值范圍為
(0,
1
2
]∪[1,+∞)
(0,
1
2
]∪[1,+∞)

查看答案和解析>>

設(shè)命題P:不等式對一切實數(shù)x恒成立;命題q:函數(shù)f(x)=-(7-2m)x是R上的減函數(shù).若命題p或q為真命題,命題p且q為假命題,則實數(shù)m的取值范圍是    

查看答案和解析>>

設(shè)命題P:不等式數(shù)學公式對一切實數(shù)x恒成立;命題q:函數(shù)f(x)=-(7-2m)x是R上的減函數(shù).若命題p或q為真命題,命題p且q為假命題,則實數(shù)m的取值范圍是 ________.

查看答案和解析>>

已知命題p:關(guān)于x的不等式x2+2ax+4>0對?x∈R恒成立;命題q:函數(shù)y=-(4-2a)x是R上的減函數(shù).若“p∨q”為真命題,“p∧q”為假命題,則實數(shù)a的取值范圍是
[
3
2
,2)∪(-∞,-2]
[
3
2
,2)∪(-∞,-2]

查看答案和解析>>

已知命題p:關(guān)于x的不等式x2+2ax+4>0對?x∈R恒成立;命題q:函數(shù)y=-(4-2a)x是R上的減函數(shù).若“p∨q”為真命題,“p∧q”為假命題,則實數(shù)a的取值范圍是______.

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為

…………………………6分

(2)設(shè)內(nèi)角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當且僅當    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

             2分

       點O為DC的中點,DC=2,

       OC=1.

       又

       同理

      

       平面D1AO.      4分

   (II)平面ABCD,

           

       又平面D1DO.

      

       ,

       在平面D1DO內(nèi),作

       垂足為H,則平面ADD1A1

       線段OH的長為點O到平面ADD1A1的距離.       6分

       平面ABCD,

       在平面ABCD上的射影為DO.

       為側(cè)棱DD1與底面ABCD所成的角,

      

       在

       即點O到平面ADD1A1的距離為    8分

<span id="1il7a"><dfn id="1il7a"></dfn></span>

           平面ABCD,

          

           又平面AOD1

           又,

           為二面角C―AD1―O的平面角      10分

           在

          

           在

          

           取D1C的中點E,連結(jié)AE,

           則

          

          

           在

           二面角C―AD1―O的大小為      12分

    19.解:(I)

               3分

       (II)因為

          

           歸納得

           則     5分

          

          

                 7分

       (III)當

                 9分

           則

          

                  13分

    20.解:(I)設(shè)

          

          

                  3分

           代入為P點的軌 跡方程.

           當時,P點的軌跡是圓.     6分

       (II)由題設(shè)知直線的方程為

           設(shè)

           聯(lián)立方程組

           消去     8分

    * 方程組有兩個不等解,

          

          

           而

               10分

           當

           當

           當

           綜上,      13分

    21.解:(1)

              1分

           依題意有

          

           解得

                4分

       (2).

           依題意,是方程的兩個根,

          

          

          

                   6分

           設(shè)

           由;

           由

           所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間[4,6]上是減函數(shù).

           有極大值為96,

           上的最大值為96.

                  9分

       (III)的兩根,

           .

          

           ∴

    =          11分

           ∵,

          

           即

          

           成立          13分

     

     


    同步練習冊答案