題目列表(包括答案和解析)
已知曲線的參數(shù)方程是(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)設,令=,
則==,
∵,∴的取值范圍是[32,52]
有以下三個不等式:
;
;
.
請你觀察這三個不等式,猜想出一個一般性的結(jié)論,并證明你的結(jié)論。
【解析】根據(jù)已知條件可知歸納猜想結(jié)論為
下面給出運用綜合法的思想求解和證明。解:結(jié)論為:. …………………5分
證明:
所以
為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實驗,將這200只家兔隨機地分成兩組。每組100只,其中一組注射藥物A,另一組注射藥物B。下表1和表2分別是注射藥物A和藥物B后的實驗結(jié)果。(皰疹面積單位:)
表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 |
||||
頻數(shù) |
30 |
40 |
20 |
10 |
頻率/組距 |
|
|
|
|
表2:注射藥物B后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 |
|||||
頻數(shù) |
10 |
25 |
20 |
30 |
15 |
頻率/組距 |
|
|
|
|
|
(1) 完成上面兩個表格及下面兩個頻率分布直方圖;
(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”。 (結(jié)果保留4位有效數(shù)字)
|
皰疹面積小于70 |
皰疹面積不小于70 |
合計 |
注射藥物A |
a= |
b= |
|
注射藥物B |
c= |
d= |
|
合計 |
|
|
n= |
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
;
【解析】根據(jù)已知條件,得到列聯(lián)表中的a,b,c,d的值,代入已知的公式中
然后求解值,判定兩個分類變量的相關性。
解:
由于K2≥10.828,所以有99.9%的把握認為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”
正方形ABCD的邊長為1,點E在邊AB上,點F在邊BC上,AE=BF=.動點P從E出發(fā)沿直線喜愛那個F運動,每當碰到正方形的方向的邊時反彈,反彈時反射等于入射角,當點P第一次碰到E時,P與正方形的邊碰撞的次數(shù)為
(A)16(B)14(C)12(D)10
【解析】結(jié)合已知中的點E,F的位置,進行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關系,作圖,可以得到回到EA點時,需要碰撞14次即可.
正方形的邊長為,點在邊上,點在邊上,。動點從出發(fā)沿直線向運動,每當碰到正方形的邊時反彈,反彈時反射角等于入射角,當點第一次碰到時,與正方形的邊碰撞的次數(shù)為
(A) (B) (C) (D)
【解析】結(jié)合已知中的點E,F的位置,進行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關系,作圖,可以得到回到EA點時,需要碰撞6次即可.
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,N,因此,(),又A∩B=,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.
5.A 提示:由得,當時,△,
得,當時,△,且,即
所以
6.A 7.D 8.A
9.D提示:設3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.
10.A 11.B
12.D 提示:由,又因為是的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2) ;綜合(1)、(2)可得。
二、填空題
13.3 14. w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com