因?yàn)閎>1.a≤2.對任意x∈[0.1].可以推出 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知函數(shù)f(x)=x3+bx2+cx+d (b,c,d∈R且都為常數(shù))的導(dǎo)函數(shù)f¢(x)=3x2+4x且f(1)=7,設(shè)F(x)=f(x)-ax2

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范圍;

(3)在(2)的條件下比較a2-13a+39與的大小.

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公切線

   (1)求a,b的值;

   (2)對任意x>0,試比較f(x)與g(x)的大小.

查看答案和解析>>

已知a,x∈R,函數(shù)f(x)=sin2x-(2
2
+
2
a)sin(x+
π
4
)-
2
2
cos(x-
π
4
)

(1)設(shè)t=sinx+cosx,把函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)表達(dá)式和定義域;
(2)對任意x∈[0,
π
2
]
,函數(shù)f(x)>-3-2a恒成立,求a的取值范圍.

查看答案和解析>>

已知a,x∈R,函數(shù)f(x)=sin2x-(2
2
+
2
a)sin(x+
π
4
)-
2
2
cos(x-
π
4
)

(1)設(shè)t=sinx+cosx,把函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)表達(dá)式和定義域;
(2)對任意x∈[0,
π
2
]
,函數(shù)f(x)>-3-2a恒成立,求a的取值范圍.

查看答案和解析>>

若不等式a≤x2-4x對任意x∈(0,1]恒成立,則a的取值范圍是(    )

A.a≥-1             B.a≥-3              C.a≤-3              D.-3<a≤0

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個(gè)選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時(shí),△,

,當(dāng)時(shí),△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因?yàn)?sub>的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1);

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊答案