解析:(1)∵.是方程的兩個根.∴, 查看更多

 

題目列表(包括答案和解析)

已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

在兩個變量x,y進行曲線回歸分析時,有下列步驟:
①    對所求出的回歸方程作出解釋;②收集數(shù)據(jù)③求線性回歸方程;
④求相關系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.如果根據(jù)可形性要求能夠作出變量x,y具有線性相關結論,則在下列操作順序中正確的是
A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①

查看答案和解析>>

命題方程有兩個不等的正實數(shù)根, 命題方程無實數(shù)根。若“”為真命題,求的取值范圍。

【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運用。

解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題

當p為真命題時,則,得;

當q為真命題時,則

當q和p都是真命題時,得

 

查看答案和解析>>

4、在對兩個變量x,y進行線性回歸分析時,有下列步驟:
①對所求出的回歸直線方程作出解釋;
②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
③求線性回歸方程;④求相關系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關結論,則在下列操作順序中正確的是( 。

查看答案和解析>>

2.在兩個變量x,y進行曲線回歸分析時,有下列步驟:

①     對所求出的回歸方程作出解釋;②收集數(shù)據(jù)③求線性回歸方程;

④求相關系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.如果根據(jù)可形性要求能夠作出變量x,y具有線性相關結論,則在下列操作順序中正確的是

A.①②⑤③④            B.③②④⑤①            C.②④③①⑤            D.②⑤④③①

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當q=1時,Sn,Sn+1,Sn+2構成等差數(shù)列;

當q=-2時,Sn+1,Sn,Sn+2構成等差數(shù)列;

當q=-時,Sn,Sn+2,Sn+1構成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉相除法:         

的最大公約數(shù).

(法二)更相減損術:

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),

(2)由(1)得,假設數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

,

又設銷售利潤為數(shù)列

,

考察的單調(diào)性,

當n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當n≤50時,

當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習冊答案