解析一:(略) .反思一:累加相鄰兩項(xiàng)差的方法也是解決遞推數(shù)列問(wèn)題的常用手段. 查看更多

 

題目列表(包括答案和解析)

(2013•綿陽(yáng)一模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(t-1)Sn=2tan-t-1(其中t為常數(shù),t>0,且t≠1).
(I)求證:數(shù)列{an}為等比數(shù)列;
(II)若數(shù)列{an}的公比q=f(t),數(shù)列{bn}滿足b1=a1,bn+1=
1
2
f(bn),求數(shù)列{
1
bn
}的通項(xiàng)公式;
(III)設(shè)t=
1
3
,對(duì)(II)中的數(shù)列{an},在數(shù)列{an}的任意相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)
(-1)k
bk
(k∈N*)后,得到一個(gè)新的數(shù)列:a1,
(-1)1
b1
,a2,
(-1)2
b2
,
(-1)2
b2
,a3
(-1)3
b3
,
(-1)3
b3
,
(-1)3
b3
,a4…,記此數(shù)列為{cn}.求數(shù)列{cn}的前50項(xiàng)之和.

查看答案和解析>>

(2013•惠州一模)已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+bn=0(n∈N*)的兩實(shí)根,且a1=1.
(Ⅰ)求證:數(shù)列{an-
13
×2n}
是等比數(shù)列;
(Ⅱ)Sn是數(shù)列{an}的前n項(xiàng)的和.問(wèn)是否存在常數(shù)λ,使得bn>λSn對(duì)?n∈N*都成立,若存在,求出λ的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一個(gè)各項(xiàng)均正的等比數(shù)列,其每一項(xiàng)都等于它后面的相鄰兩項(xiàng)之和,則公比等于
5
-1
2
5
-1
2

查看答案和解析>>

植樹(shù)節(jié)某班20名同學(xué)在一段直線公路一側(cè)植樹(shù),每人植一棵,相鄰兩棵樹(shù)相距10米,開(kāi)始時(shí)需將樹(shù)苗集中放置在某一樹(shù)坑旁邊,現(xiàn)將樹(shù)坑從1到20依次編號(hào),為使各位同學(xué)從各自樹(shù)坑前來(lái)領(lǐng)取樹(shù)苗所走的路程總和最小,樹(shù)苗可以放置的兩個(gè)最佳 坑位的編號(hào)為
10和11
10和11

查看答案和解析>>

(2013•內(nèi)江一模)對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0
f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=
x2+a
bx-c
有且僅有兩個(gè)不動(dòng)點(diǎn)0、2.
(1)求b、c滿足的關(guān)系式;
(2)若c=時(shí),相鄰兩項(xiàng)和不為零的數(shù)列{an}滿足4Snf(
1
an
)
=1(Sn是數(shù)列{an}的前n項(xiàng)和),求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an
;
(3)在(2)的條件下,設(shè)bn=-
1
an
,Tn是數(shù)列{bn}的前n項(xiàng)和,求證:T2012-1<ln2012<T2011

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語(yǔ)句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時(shí),是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1);

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

20.解:設(shè)未贈(zèng)禮品時(shí)的銷(xiāo)售量為a0個(gè),而贈(zèng)送禮品價(jià)值n元時(shí)銷(xiāo)售量為an個(gè),

,

又設(shè)銷(xiāo)售利潤(rùn)為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時(shí),最大

答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤(rùn).

 

21.解析:(1)時(shí),

兩式相減:

故有

。

數(shù)列為首項(xiàng)公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時(shí),

當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊(cè)答案