2.共軛復(fù)數(shù)的運(yùn)算性質(zhì): 查看更多

 

題目列表(包括答案和解析)

復(fù)數(shù)間的關(guān)系

(1)復(fù)數(shù)相等

①用代數(shù)形式描述:

z1=a+bi,z2=c+di(a、b、c、d∈R),

則z1=z2________.

特殊的,a+bi=0________.

兩個(gè)復(fù)數(shù)不都是實(shí)數(shù)時(shí),________比較大。

②用幾何形式描述:

z1、z2C,z1=z2對(duì)應(yīng)點(diǎn)Z1、Z2________________.

(2)共軛復(fù)數(shù)

①定義:若兩個(gè)復(fù)數(shù)實(shí)部________,虛部________時(shí),這兩個(gè)復(fù)數(shù)叫做互為共軛復(fù)數(shù),用________表示.

②代數(shù)形式:a+bi與________互為共軛復(fù)數(shù)(a、b∈R),即z=a+bi=________.

③幾何描述:非零復(fù)數(shù)z1、z2互為共軛復(fù)數(shù)它們的對(duì)應(yīng)點(diǎn)Z1、Z2(或?qū)?yīng)向量)關(guān)于________對(duì)稱.

④運(yùn)算性質(zhì):

=________;

=________;

=________(z2≠0).

特例:z+=________;z-=________;z·=________;

z=是z∈R的________條件;

z+=0,且z≠0是z為純虛數(shù)的________條件.

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運(yùn)算即可.

3.B.提示:為實(shí)數(shù),所以

4.C.提示:這是一個(gè)條件分支結(jié)構(gòu),實(shí)質(zhì)是分段函數(shù)求最值問(wèn)題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時(shí),解得,不合題意;當(dāng)時(shí),解得,不合題意;

當(dāng)時(shí),解得,符合題意,所以當(dāng)輸入的值為3時(shí),輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因?yàn)?sub>為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個(gè)大于或等于的值時(shí),的表達(dá)式中最后一項(xiàng)的值.

.所以時(shí),

此時(shí)

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)為,因?yàn)?sub>,所以,所以此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)在第四象限.

10.B.提示:設(shè)工序c所需工時(shí)數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時(shí)1+x+4+1=10.∴x=4,即工序c所需工時(shí)數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點(diǎn)落在以為端點(diǎn)的線段上,如右圖.表示線段上的點(diǎn)到的距離之和,顯然當(dāng)共線時(shí),和最小,此時(shí),點(diǎn)是直線的交點(diǎn),由圖知,交點(diǎn)為,所以

,當(dāng)時(shí),,

二、填空題

13.,.提示:這是一個(gè)當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時(shí)洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時(shí)間為21分鐘.

15..提示:設(shè)方程的實(shí)根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過(guò)的工序次數(shù)是粗加工、檢驗(yàn)、精加工或返修加工、檢驗(yàn),至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點(diǎn)坐標(biāo)為,

設(shè)D點(diǎn)的坐標(biāo)為

因?yàn)?sub>,得

,即,

所以,則對(duì)應(yīng)的復(fù)數(shù)為

⑵因?yàn)?sub>,所以復(fù)數(shù)的對(duì)應(yīng)點(diǎn)Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因?yàn)?sub>,

所以,若,則,

消去可得:,

可化為,則當(dāng)時(shí),取最小值;當(dāng)時(shí),取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時(shí),;當(dāng)時(shí),

所以,可以化為

當(dāng)時(shí),時(shí),有最小值;當(dāng)時(shí),則時(shí),有最小值

因?yàn)?sub>,所以所得值中的最小值為1.

21.解:,

所以.因?yàn)?sub>,所以

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語(yǔ)句為:

;

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊(cè)答案