分析:把表示出來.然后利用三角函數(shù)的有界性求最大值. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足O為坐標(biāo)原點),當(dāng) 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

把下列集合用另一種方法表示出來.

(1){15的正約數(shù)};

(2){(x,y)|x+y=5,x∈N*,y∈N*};

(3)正偶數(shù)集.

  

查看答案和解析>>

在△ABC中,角A,BC所對邊分別為a,b,c,且

        (Ⅰ)求角A;

        (Ⅱ)若m,n,試求|mn|的最小值.

【解析】(I)把切化成弦,然后根據(jù)正弦定理,把等號右邊的邊的比,轉(zhuǎn)化為對應(yīng)的角的正弦的比,再借助誘導(dǎo)公式求A.

(II)根據(jù)第(I)問求出的A角,然后把C角用B角來表示,再借助向量表示成關(guān)于角B的函數(shù),然后根據(jù)三角函數(shù)的知識求最小值即可.

 

查看答案和解析>>

設(shè)始點為同一點O的向量的終點,A,B,C在同一條直線上,根據(jù)下列條件把表示出來:
(1)c為線段AB的中點.
(2)C為以3:2內(nèi)分線段AB的分點.
(3)C為以3:1外分線段AB的分點.

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對稱軸為

(I)求函數(shù)的表達式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因為

由余弦定理得,……11分故

 

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時,解得,不合題意;當(dāng)時,解得,不合題意;

當(dāng)時,解得,符合題意,所以當(dāng)輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個大于或等于的值時,的表達式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對應(yīng)點為,因為,所以,所以此復(fù)數(shù)的對應(yīng)點在第四象限.

10.B.提示:設(shè)工序c所需工時數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當(dāng)共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當(dāng)時,,

二、填空題

13..提示:這是一個當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設(shè)方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標(biāo)為,

設(shè)D點的坐標(biāo)為

因為,得,

,即,

所以,則對應(yīng)的復(fù)數(shù)為

⑵因為,所以復(fù)數(shù)的對應(yīng)點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,

所以,若,則

消去可得:,

可化為,則當(dāng)時,取最小值;當(dāng)時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時,;當(dāng)時,;

所以,可以化為,

當(dāng)時,時,有最小值;當(dāng)時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:,

所以.因為,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊答案