分析:先求出的充要條件.再判定與充要條件的關(guān)系. 查看更多

 

題目列表(包括答案和解析)

已知,當(dāng)時,

(1)證明:;

(2)若成立,請先求出的值,并利用值的特點求出函數(shù)的表達(dá)式.

 

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即,時取等號.

故圓面積的最小值

 

查看答案和解析>>

下列語句表達(dá)中是算法的有
①從濟南到巴黎,可以先乘火車到北京,再坐飛機抵達(dá);
②利用公式,計算底為1、高為2的三角形的面積;
>2x+4;
④求M(1,2)與N(-3,-5)兩點連線所在直線的方程,可先求MN的斜率,再利用點斜式求得方程. 

[     ]
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:?

(1)方程有兩個正根的充要條件;

(2)方程至少有一個正根的充要條件.?

思路分析:先求出方程有兩個實根的充要條件,再討論x2的系數(shù)及運用根與系數(shù)的關(guān)系分別求出要求的充要條件.

查看答案和解析>>

某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日到3日的每天晝夜溫差與實驗室每天每100顆種子發(fā)芽數(shù),得到如下資料:

 

日期

12月1日

12月2日

12月3日

溫差x(0C)

11

13

12

發(fā)芽數(shù)y(顆)

25

30

26

 

該農(nóng)科所確定的研究方案是:先從這3組數(shù)據(jù)求出線性回歸方程,再對12月4日的數(shù)據(jù)進(jìn)行推測和檢驗.則根據(jù)以上3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程是

A.    B.    C.     D.

 

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時,解得,不合題意;當(dāng)時,解得,不合題意;

當(dāng)時,解得,符合題意,所以當(dāng)輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個大于或等于的值時,的表達(dá)式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對應(yīng)點為,因為,所以,所以此復(fù)數(shù)的對應(yīng)點在第四象限.

10.B.提示:設(shè)工序c所需工時數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當(dāng)共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當(dāng)時,,

二、填空題

13..提示:這是一個當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設(shè)方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標(biāo)為,

設(shè)D點的坐標(biāo)為

因為,得,

,即,

所以,則對應(yīng)的復(fù)數(shù)為

⑵因為,所以復(fù)數(shù)的對應(yīng)點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,

所以,若,則

消去可得:,

可化為,則當(dāng)時,取最小值;當(dāng)時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時,;當(dāng)時,;

所以,可以化為,

當(dāng)時,時,有最小值;當(dāng)時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:

所以.因為,所以

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

   

        ;

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊答案