A.1 B.2 C.1或2 D.分析:直接按純虛數(shù)滿足的條件列式求解即可. 查看更多

 

題目列表(包括答案和解析)

對回歸分析,下列說法錯誤的是(  ).

[  ]

A.在回歸分析中,變量間的關(guān)系若是非確定性關(guān)系,那么因變量不能由自變量唯一確定

B.線性相關(guān)系數(shù)可以是正的或負(fù)的

C.回歸分析中,如果γ2=1即γ2±1,說明x與y之間完全線性相關(guān)

D.樣本相關(guān)系數(shù)的范圍是r∈(-1,1)

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對問題“已知不等式xy≤ax2+2y2對于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說:“可視x為變量,y為常量來分析”.
乙說:“尋找x與y的關(guān)系,再作分析”.
丙說:“把字母a單獨放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實數(shù)a的取值范圍是( 。
A、[-1,6]B、[-1,4)C、[-1,+∞)D、[1,+∞)

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對問題“已知不等式xy≤ax2+2y2對于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說:“可視x為變量,y為常量來分析”.
乙說:“尋找x與y的關(guān)系,再作分析”.
丙說:“把字母a單獨放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實數(shù)a的取值范圍是( )
A.[-1,6]
B.[-1,4)
C.[-1,+∞)
D.[1,+∞)

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對問題“已知不等式xy≤ax2+2y2對于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說:“可視x為變量,y為常量來分析”.
乙說:“尋找x與y的關(guān)系,再作分析”.
丙說:“把字母a單獨放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實數(shù)a的取值范圍是( )
A.[-1,6]
B.[-1,4)
C.[-1,+∞)
D.[1,+∞)

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對問題“已知不等式xy≤ax2+2y2對于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說:“可視x為變量,y為常量來分析”.
乙說:“尋找x與y的關(guān)系,再作分析”.
丙說:“把字母a單獨放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實數(shù)a的取值范圍是


  1. A.
    [-1,6]
  2. B.
    [-1,4)
  3. C.
    [-1,+∞)
  4. D.
    [1,+∞)

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時,解得,不合題意;當(dāng)時,解得,不合題意;

當(dāng)時,解得,符合題意,所以當(dāng)輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個大于或等于的值時,的表達(dá)式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對應(yīng)點為,因為,所以,所以此復(fù)數(shù)的對應(yīng)點在第四象限.

10.B.提示:設(shè)工序c所需工時數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當(dāng)共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當(dāng)時,,

二、填空題

13..提示:這是一個當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設(shè)方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標(biāo)為,

設(shè)D點的坐標(biāo)為

因為,得,

,即,

所以,則對應(yīng)的復(fù)數(shù)為

⑵因為,所以復(fù)數(shù)的對應(yīng)點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,

所以,若,則

消去可得:,

可化為,則當(dāng)時,取最小值;當(dāng)時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時,;當(dāng)時,;

所以,可以化為,

當(dāng)時,時,有最小值;當(dāng)時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:

所以.因為,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊答案