17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:

當(dāng)時,解得,不合題意;當(dāng)時,解得,不合題意;

當(dāng)時,解得,符合題意,所以當(dāng)輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個大于或等于的值時,的表達(dá)式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對應(yīng)點為,因為,所以,所以此復(fù)數(shù)的對應(yīng)點在第四象限.

10.B.提示:設(shè)工序c所需工時數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當(dāng)共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當(dāng)時,,

二、填空題

13.,.提示:這是一個當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設(shè)方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標(biāo)為

設(shè)D點的坐標(biāo)為

因為,得,

,即,

所以,則對應(yīng)的復(fù)數(shù)為

⑵因為,所以復(fù)數(shù)的對應(yīng)點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,

所以,若,則,

消去可得:,

可化為,則當(dāng)時,取最小值;當(dāng)時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時,;當(dāng)時,;

所以,可以化為,

當(dāng)時,時,有最小值;當(dāng)時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:

所以.因為,所以

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊答案