則=.當且僅當 x=y時取等號.故選D.點評:(1)本題關鍵是運用等差.等比數(shù)列的性質(zhì)將結論轉化為用x.y表示.然后用基本不等式解決問題. 查看更多

 

題目列表(包括答案和解析)

(2011•晉中三模)若對任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出下列四個二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
f(x,y)=
x-y
; ④f(x,y)=x2+y2
能夠稱為關于實數(shù)x、y的廣義“距離”的函數(shù)的序號是
①④
①④

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關于的x、y的廣義“距離”的函數(shù)的序號是
 

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x,y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請選出所有能夠成為關于x,y的廣義“距離”的序號

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x,y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請選出所有能夠成為關于x,y的廣義“距離”的序號______.

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
能夠成為關于的x、y的廣義“距離”的函數(shù)的序號是   

查看答案和解析>>


同步練習冊答案