答案:B.解析:由.利用累加法.得. 查看更多

 

題目列表(包括答案和解析)

在函數(shù)的圖象上有、、三點,橫坐標分別為其中

⑴求的面積的表達式;

⑵求的值域.

【解析】由題意利用分割可先表示三角形ABC的面積,然后應(yīng)用對數(shù)運算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識的簡單綜合.

 

查看答案和解析>>

【解析】如圖:|OB|=b,|O F1|=c.∴kPQ,kMN=﹣

直線PQ為:y(xc),兩條漸近線為:yx.由,得:Q(,);由,得:P(,).∴直線MN為:y=﹣(x),

y=0得:xM.又∵|MF2|=|F1F2|=2c,∴3cxM,解之得:,即e

【答案】B

查看答案和解析>>

解析:由直觀圖與原圖形中邊OB長度不變,由S原圖形=2S直觀圖,有·OB·h=2××2·OB′,∴h=4.

答案:D

查看答案和解析>>

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。

 

查看答案和解析>>

下列敘述中,是離散型隨機變量的為(    ) 

A.某人早晨在車站等出租車的時間

B.將一顆均勻硬幣擲十次,出現(xiàn)正面或反面的次數(shù)

C.連續(xù)不斷的射擊,首次命中目標所需要的次數(shù)

D.袋中有2個黑球6個紅球,任取2個,取得一個紅球的可能性 3.C.解析:由條件f(a)>0,f(b)>0僅知道二次函數(shù)圖象過x軸上方兩點,據(jù)此畫圖會出現(xiàn)多種情況與x軸交點橫坐標在(a,b)上可能有0個、1個或2個,因此選C

查看答案和解析>>


同步練習冊答案