易錯指導:不能通過草圖和簡單的計算確定點和拋物線的位置關(guān)系.不能將拋物線上的點到焦點的距離轉(zhuǎn)化為其到準線的距離.是解錯本題或不能解答本題的原因. 查看更多

 

題目列表(包括答案和解析)

在上海世界博覽會開展期間,計劃選派部分高二學生參加宣傳活動,報名參加的學生需進行測試,共設(shè)4道選擇題,規(guī)定必須答完所有題,且答對一題得1分,答錯一題扣1分,至少得2分才能入選成為宣傳員;甲乙丙三名同學報名參加測試,他們答對每個題的概率都為,且每個人答題相互不受影響.

(1)求學生甲能通過測試成為宣傳員的概率;

(2)求至少有兩名學生成為宣傳員的概率.

 

查看答案和解析>>

2012年4月15日,央視《每周質(zhì)量報告》曝光某省一些廠商用生石灰處理皮革廢料,熬制成工業(yè)明膠,賣給一些藥用膠囊生產(chǎn)企業(yè),由于皮革在工業(yè)加工時,要使用含鉻的鞣制劑,因此這樣制成的膠囊,往往重金屬鉻超標,嚴重危害服用者的身體健康.該事件報道后,某市藥監(jiān)局立即成立調(diào)查組,要求所有的藥用膠囊在進入市場前必須進行兩輪檢測,只有兩輪都合格才能進行銷售,否則不能銷售,兩輪檢測是否合格相互沒有影響.
(1)某藥用膠囊共生產(chǎn)3個不同批次,經(jīng)檢測發(fā)現(xiàn)有2個批次為合格,另1個批次為不合格,現(xiàn)隨機抽取該藥用膠囊5件,求恰有2件不能銷售的概率;
(2)若對某藥用膠囊的3個不同批次分別進行兩輪檢測,藥品合格的概率如下表:
第1批次 第2批次 第3批次
第一輪檢測
3
5
5
6
1
2
第二輪檢測
2
3
4
5
2
3
記該藥用膠囊能通過檢測進行銷售的批次數(shù)為X,求X的分布列及數(shù)學期望EX.

查看答案和解析>>

甲、乙、丙三人分別獨立的進行某項技能測試,已知甲能通過測試的概率是
2
5
,甲、乙、丙三人都能通過測試的概率是
3
20
,甲、乙、丙三人都不能通過測試的概率是
3
40
,且乙通過測試的概率比丙大.
(Ⅰ)求乙、丙兩人各自通過測試的概率分別是多少;
(Ⅱ)求測試結(jié)束后通過的人數(shù)ξ的數(shù)學期望Eξ.
(Ⅲ)求在乙通過測試的條件下,甲沒有通過測試的概率.

查看答案和解析>>

一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為
12
,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(Ⅰ)求這批產(chǎn)品通過檢驗的概率;
(Ⅱ)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

某電視臺開辦“激情大沖關(guān)”娛樂節(jié)目,設(shè)置了10項關(guān)卡,游戲規(guī)定:選手需要在這10項關(guān)卡中抽簽選擇其中的5項進行沖關(guān).若5項全部通過,則挑戰(zhàn)成功,否則失。捎谀撤N原因選手甲在這10項關(guān)卡中有兩項不能通過,其余關(guān)卡都能通過.
(1)求選手甲挑戰(zhàn)成功的概率;
(2)若選手甲連續(xù)挑戰(zhàn)兩次(假設(shè)兩次挑戰(zhàn)相互之間沒有影響),求該選手這兩次挑戰(zhàn)中恰有一次挑戰(zhàn)成功的概率.

查看答案和解析>>

一、選擇題

1-5 BBAB 文B理A  6-10 ADCBC 11-12文B理D A

6.A 提示:設(shè),則表示點與點(0,0)連線的斜率.當該直線kx-y=0與圓相切時,取得最大值與最小值.圓心(2,0),由=1,解得,∴的最大值為.11.(文) B 

11.(文) A       提示:拋物線的焦點為F(1,0),作PA垂直于準線x=-1,則

|PA|=|PF|,當A、P、Q在同一條直線上時,

|PF|+|PQ|=|PA|+|PQ|=|AQ|,

此時,點P到Q點距離與拋物線焦點距離之和取得最小值,

P點的縱坐標為-1,有1=4x,x=,此時P點坐標為(,-1),故選A。

11.(理) B提示:設(shè)

。

12.A    提示:如右圖所示,設(shè)點P的坐標為(x0,y0),由拋物線以F2為頂點,F1為焦點,可得其準線的方

程為x=3c, 根據(jù)拋物線的定義可得|PF1|=|PR|=3c-x0,又由點P為雙曲線上的點,根據(jù)雙曲線的第二定義可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故應選A.

二、填空題:13-16文    3   35

 

 

 

 

 

 

九、實戰(zhàn)演習

一  選擇題

1.與圓相切,且在兩坐標軸上截距相等的直線共有 (   )

A.2條          B.3條         C.4條        D.6條

1.C提示: 在兩坐標軸上截距相等的直線有兩類:①直線過原點時,有兩條與已知圓相切;②直線不過原點時,設(shè)其方程為,也有兩條與已知圓相切.易知①、②中四條切線互不相同,故選C.

2.在中,三內(nèi)角所對的邊是成等差數(shù)列,那么直線與直線的位置關(guān)系是  (        )

A.平行        B.重合       C.垂直      D.相交但不垂直

2.B提示:成等差數(shù)列,

,

,故兩直線重合。選B。

3.已知函數(shù),集合,集合,則集合的面積是      

A.             B.            C.            D.

3.D提示: 集合即為:,集合即為: ,其面積等于半圓面積。

4.(文)已知直線m:交x軸于M,E是直線m上的點,N(1,0),又P在線段EN的垂直平分線上,且,則動點P的軌跡是(  )

A.圓   B.橢圓   C.雙曲線    D.拋物線

4.(文)D.

4.(理)已知P在雙曲線上變動,O是坐標原點,F(xiàn)是雙曲線的右焦點,則的重心G的軌跡方程是(  )

A.    B.

C.     D.

4.(理)C.提示:雙曲線焦點坐標是F(6,0).設(shè)雙曲線上任一點P(x0,y0), 的重心G(x,y),則由重心公式,

,解得,代入,得為所求.

5.已知是三角形的一個內(nèi)角,且,則方程表示(  。

A.焦點在軸上的橢圓     B.焦點在軸上的橢圓

C.焦點在軸上的雙曲線    D.焦點在軸上的雙曲線

5.B提示:由,又是三角形的一個內(nèi)角,故,

再由

結(jié)合解得

。

故方程表示焦點在軸上的橢圓。選B。

或者結(jié)合單位圓中的三角函數(shù)線直接斷定。

6.過拋物線的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于5,則這樣的直線                        。    )

A.有且僅有一條     B.有且僅有兩條      C.有無窮多條      D.不存在

6.B提示:該拋物線的通徑長為4,而這樣的弦AB的長為,故這樣的直線有且僅有兩條。選B。

或者(1)當該直線的斜率不存在時,它們的橫坐標之和等于2;

(2)當該直線的斜率存在時,設(shè)該直線方程為,代入拋物線方程得

,由。故這樣的直線有且僅有兩條。

7.一個橢圓中心在原點,焦點軸上,(2,)是橢圓上一點,且成等差數(shù)列,則橢圓方程為           。ā  。

A.     B.    C.     D.

7.A提示:設(shè)橢圓方程為,由成等差數(shù)列知,從而,故橢圓方程為,將P點的坐標代入得,故所求的橢圓方程為。選A。

8.以A(4,3,1),B(7,1,2),C(5,2,3)為頂點的三角形形狀為(  )

A .直角三角形  B. 等腰三角形   C.非等腰三角形三角形   D.等邊三角形

8. B.提示:由兩點間距離公式,得,故選B.

9. 若直線與雙曲線的右支交于不同的兩點,則k的取值范圍是( )

A.,   B.,     C.   D.,

9.D提示:特別注意的題目。將直線代入雙曲線方程

若直線與雙曲線的右支交于不同的兩點,則應滿足

。選D。

10. (文)設(shè)離心率為e的雙曲線的右焦點為F,直線過點F且斜率為K,則直線與雙曲線C左、右支都有相交的充要條件是(  )

A.      B. 

C.      D.

10. (理)已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”。給出下列直線①。其中屬于“B型直線”的是(      )

A、①③    B、①②     C、③④     D、①④

10. (文)C  提示:由已知設(shè)漸近線的斜率為于是

,即故選C;

10. (理)B 提示:理解為以M、N為焦點的雙曲線,則c=5, 又|PM|-|PN|=6,則a=3,b=4,幾何意義是雙曲線的右支,所謂“B型直線”即直線與雙曲線的右支有交點,又漸近線為:,逐一分析,只有①②與雙曲線右支有交點,故選B;

11.已知雙曲線的左、右焦點分別為,點P在雙曲線上,且,則此雙曲線的離心率的最大值為   (   )

A、      B、     C、     D、2

11.B提示:由    又

故選B項。

12.若AB過橢圓 + =1 中心的弦, F1為橢圓的焦點, 則△F1AB面積的最大值為(    ) 

A. 6   B.12   C.24   D.48

12.B提示:設(shè)AB的方程為,代入橢圓方程得。選B。

二  填空題

13.橢圓M:=1 (a>b>0) 的左、右焦點分別為F1、F2,P為橢圓M上任一點,且 的最大值的取值范圍是[2c2,3c2],其中. 則橢圓M的離心率e的取值范圍是         

13.

14. 1.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)發(fā)射了兩顆“銥星”系統(tǒng)通信衛(wèi)星.衛(wèi)星運行的軌道是以地球中心為一個焦點的橢圓,近地點為m km,遠地點為  n km,地球的半徑為R km,則通信衛(wèi)星運行軌道的短軸長等于         

           

14. 2提示:  c=m+R, +c=n+R

c=,b=2=2.

15. 已知與曲線C:x2+y2-2x-2y+1=0相切的直線交x、y軸于A、B兩點,O為原點,|OA|=a,|OB|=b,a>2,b>2,線段AB中點的軌跡方程是                               。

15. 提示:滿足(a-2)(b-2)=2。設(shè)AB的中點坐標為(x,y), 則a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。

    16.以下四個關(guān)于圓錐曲線的命題中

①設(shè)A、B為兩個定點,k為非零常數(shù),,則動點P的軌跡為雙曲線;

②過定圓C上一定點A作該圓的動弦AB,O為坐標原點,若則動點的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;

④雙曲線有相同的焦點.

其中真命題的序號為                 (寫出所有真命題的序號)

16. ③、④

三  解答題(74分)

17. (本小題滿分12分)已知,直線和圓

(1)求直線斜率的取值范圍;

(2)直線能否將圓分割成弧長的比值為的兩段圓弧?為什么?

解析:(1)直線的方程可化為,直線的斜率,因為,所以,當且僅當時等號成立.

所以,斜率的取值范圍是

(2)不能.由(1)知的方程為,其中

的圓心為,半徑.圓心到直線的距離

,得,即.從而,若與圓相交,則圓截直線所得的弦所對的圓心角小于.所以不能將圓分割成弧長的比值為的兩段弧.

18. (本小題滿分12分)已知A、B分別是橢圓的左右兩個焦點,O為坐標原點,點P)在橢圓上,線段PB與y軸的交點M為線段PB的中點。

(1)求橢圓的標準方程;

(2)點C是橢圓上異于長軸端點的任意一點,對于△ABC,求的值

18.解:(1)由題意知:

∴橢圓的標準方程為=1.        

(2)∵點C在橢圓上,A、B是橢圓的兩個焦點,

∴AC+BC=2a=,AB=2c=2 .   

在△ABC中,由正弦定理,  ,

.       

19.(本小題滿分12分)已知橢圓的中心在原點,離心率為,一個焦點是(為大于0的常數(shù)).

 (1)求橢圓的方程;

 (2)設(shè)是橢圓上一點,且過點

同步練習冊答案