則 ▲ .解答應(yīng)寫(xiě)出文字說(shuō)明.證明過(guò)程或演算步驟. 查看更多

 

題目列表(包括答案和解析)


四.本大題共6小題,共75分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
16.(本小題滿分12分)
某飲料公司招聘一名員工,現(xiàn)對(duì)其進(jìn)行一項(xiàng)測(cè)試,以便確定工資級(jí)別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對(duì),則月工資定為3500元;若4杯選對(duì)3杯,則月工資定為2800元;否則月工資定為2100元.令X表示此人選對(duì)A飲料的杯數(shù).假設(shè)次人對(duì)A和B兩種飲料沒(méi)有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.

查看答案和解析>>

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:

設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).

(1)

,求的值;

(2)

已知函數(shù)的反函數(shù)為,若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

解答題:解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

已知定義在(-1,1)上的函數(shù)f(x)滿足,且對(duì)x,y∈(-1,1)時(shí),有

(1)

判斷f(x)在(-1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{f(x)}的通項(xiàng)公式;

(3)

設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問(wèn)是否存在正整數(shù)m,使得對(duì)任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,則說(shuō)明理由.

查看答案和解析>>

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

(理科生做)某商場(chǎng)舉行抽獎(jiǎng)促銷活動(dòng),抽獎(jiǎng)規(guī)則是:從裝有9個(gè)白球、1個(gè)紅球的箱子中每次隨機(jī)地摸出一個(gè)球,記下顏色后放回,摸出一個(gè)紅球可獲得獎(jiǎng)金10元;摸出2個(gè)紅球可獲得獎(jiǎng)金50元.現(xiàn)有甲,乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令x 表示甲,乙摸球后獲得的獎(jiǎng)金總額.求:

(1)

x 的分布列;

(2)

x 的的數(shù)學(xué)期望.

查看答案和解析>>

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

(文科生做)某商場(chǎng)舉行抽獎(jiǎng)促銷活動(dòng),抽獎(jiǎng)規(guī)則是:從裝有9個(gè)白球、1個(gè)紅球的箱子中每次隨機(jī)地摸出一個(gè)球,記下顏色后放回,摸出一個(gè)紅球獲得二得獎(jiǎng);摸出兩個(gè)紅球獲得一等獎(jiǎng).現(xiàn)有甲、乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次.求

(1)

甲、乙兩人都沒(méi)有中獎(jiǎng)的概率;

(2)

甲、兩人中至少有一人獲二等獎(jiǎng)的概率.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則;

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當(dāng)時(shí),。

18解:(Ⅰ)基本事件共有36個(gè),方程有正根等價(jià)于,即。設(shè)“方程有兩個(gè)正根”為事件,則事件包含的基本事件為共4個(gè),故所求的概率為;

(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為

設(shè)“方程無(wú)實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面

   又平面,故。

(Ⅱ)在中,過(guò)點(diǎn)于點(diǎn),則平面.

由已知及(Ⅰ)得.

(Ⅲ)在中過(guò)點(diǎn)于點(diǎn),在中過(guò)點(diǎn)于點(diǎn),連接,則由

  由平面平面,則平面

再由平面,又平面,則平面.

  故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個(gè)三等分點(diǎn)時(shí),平面.

  20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當(dāng)時(shí),有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設(shè)點(diǎn),則,

,,即

化簡(jiǎn)得,則

,故

(Ⅱ)解:由

  化簡(jiǎn)得

    由,即

故橢圓的長(zhǎng)軸長(zhǎng)的取值范圍是。

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當(dāng)時(shí),恒有

在區(qū)間上恒成立。

,解得.

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)不同的交點(diǎn),

即方程恰有3個(gè)不等的實(shí)數(shù)根。

是方程的一個(gè)實(shí)數(shù)根,則

方程有兩個(gè)非零實(shí)數(shù)根,

.

故滿足條件的存在,其取值范圍是.

 

w.w.w.k.s.5.u.c.o.m

www.ks5u.com


同步練習(xí)冊(cè)答案