的條件下.是否存在實數(shù).使得函數(shù)的圖象與函數(shù)的圖象恰有3個交點?若存在.請求出的取值范圍,若不存在.試說明理由. 濟寧市2008-2009學年度高三第一階段質量檢測 查看更多

 

題目列表(包括答案和解析)

是否存在實數(shù)a,使得復數(shù)Z=a2-a-6+
a2+2a-15a2-4
i
分別滿足下列條件,若存在,求出a的值,若不存在,請說明理由.
(1)是實數(shù)(2)是虛數(shù)(3)是純虛數(shù)(4)是零.

查看答案和解析>>

是否存在實數(shù),使得復數(shù)分別滿足下列條件,若存在,求出a的值,若不存在,請說明理由。

(1)是實數(shù)(2是虛數(shù)(3是純虛數(shù)(4是零

查看答案和解析>>

已知,,是否存在實數(shù),使同時滿足下列兩個條件:(1)上是減函數(shù),在上是增函數(shù);(2)的最小值是,若存在,求出,若不存在,說明理由.

查看答案和解析>>

已知,,是否存在實數(shù),使同時滿足下列兩個條件:(1)上是減函數(shù),在上是增函數(shù);(2)的最小值是,若存在,求出,若不存在,說明理由 

查看答案和解析>>

已知,,是否存在實數(shù),使同時滿足下列兩個條件:(1)上是減函數(shù),在上是增函數(shù);(2)的最小值是,若存在,求出,若不存在,說明理由.

 

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則;

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當時,

18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為;

(Ⅱ)試驗的全部結果構成區(qū)域,其面積為

設“方程無實根”為事件,則構成事件的區(qū)域為

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面

   又平面,故。

(Ⅱ)在中,過點于點,則平面.

由已知及(Ⅰ)得.

(Ⅲ)在中過點于點,在中過點于點,連接,則由

  由平面平面,則平面

再由平面,又平面,則平面.

  故當點為線段上靠近點的一個三等分點時,平面.

  20.解:(Ⅰ)設等差數(shù)列的公差為,

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當時,有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設點,則,

,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是。

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當時,恒有,

在區(qū)間上恒成立。

,解得.

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點,

即方程恰有3個不等的實數(shù)根。

是方程的一個實數(shù)根,則

方程有兩個非零實數(shù)根,

.

故滿足條件的存在,其取值范圍是.

 

w.w.w.k.s.5.u.c.o.m

www.ks5u.com


同步練習冊答案