直線交拋物線于點(diǎn)A.B交其準(zhǔn)線于點(diǎn)C. 查看更多

 

題目列表(包括答案和解析)

拋物線y2=2px(p>0),其準(zhǔn)線方程為x=-1,過(guò)準(zhǔn)線與x軸的交點(diǎn)M做直線l交拋物線于A、B兩點(diǎn).
(Ⅰ)若點(diǎn)A為MB中點(diǎn),求直線l的方程;
(Ⅱ)設(shè)拋物線的焦點(diǎn)為F,當(dāng)AF⊥BF時(shí),求△ABF的面積.

查看答案和解析>>

過(guò)拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于P、Q,由P、Q分別引其準(zhǔn)線的垂線PH1、QH2垂足分別為H1、H2,H1H2的中點(diǎn)為M,記|PF|=a,|QF|=b,則|MF|=
ab
ab

查看答案和解析>>

過(guò)拋物線焦點(diǎn)垂直于對(duì)稱(chēng)軸的弦叫做拋物線的通徑.如圖,已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)F的直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)A、B作準(zhǔn)線的垂線,垂足分別為A1、B1
(1)求出拋物線的通徑,證明x1x2和y1y2都是定值,并求出這個(gè)定值;
(2)證明:A1F⊥B1F.

查看答案和解析>>

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B(如圖所示),交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=4,則此拋物線的方程為(  )

查看答案和解析>>

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|且|AF|=3,則P=( 。

查看答案和解析>>

一、選擇題

1、B      

2、A    

3、D  ④少了“”這個(gè)條件,其余3個(gè)是正確的。

4、B      

5、C  取AC的中點(diǎn)O,則  四面體ABCD外接球的球心為O,半徑為 

6、D  設(shè)

7、D  由題意知,P點(diǎn)的軌跡為拋物線,以AB的中點(diǎn)為原點(diǎn),AB所在直線為軸或軸可得四個(gè)標(biāo)準(zhǔn)方程

8、A 

9、A  ,1,-1是方程的兩根

10、C  若無(wú)最小值

當(dāng)  有最小值等價(jià)于

有大于0的最小值,即

11、C      

  直線AB的斜率為1

當(dāng)過(guò)C點(diǎn)的切線與AB平行時(shí),面積取最大值設(shè)此直線方程為

    

  C到AB距離為

12、C  的整數(shù)解為

這8個(gè)點(diǎn)兩兩所連的不過(guò)原點(diǎn)的直線有24條,過(guò)這8個(gè)點(diǎn)的切線有8條,每條直線確定了唯一的有序數(shù)對(duì),共有32條。

二、填空題

13、 

 

14、    取AD中點(diǎn)E,連  為菱形,且

在側(cè)面

上的投影,為所求,

15、 0  

為偶函數(shù) 

16、 ②④   ①錯(cuò)  ②對(duì)

 ③錯(cuò) 

 當(dāng)且僅當(dāng)取等號(hào)  ④對(duì)

三、解答題

17、(1)

  即時(shí) 有最大值

(2)

18、(1)該愛(ài)好者得2分的概率為

(2)答對(duì)題的個(gè)數(shù)為,得分為,的可能取值為0,2,4,8

 

  

的分布列為

0

2

4

8

P

的數(shù)學(xué)期望為

以D為原點(diǎn),DA、DC、DP分別為軸建系如圖,

19、(1)       

  為平面PAD的一個(gè)法向量

    

(2) 

(3)由(1)知為平面的一個(gè)法向量,

設(shè)平面的法向量為

 即二面角的余弦值為

20、(1)

 當(dāng)   當(dāng)

上單增

處取得極小值

    

的最大值為  最小值為

(2)由(1)知當(dāng)

故對(duì)任意

只要對(duì)任意恒成立,即恒成立

    

實(shí)數(shù)的取值范圍是

21、(1)

  當(dāng)

不是等比數(shù)列,當(dāng)時(shí), 數(shù)列是等比數(shù)列

且公比為2,

(2)由(1)知當(dāng)

 1°

  2°

1°-2°及-

              

              

22、(1)設(shè)橢圓C的方程為

橢圓C的方程為

(2)由

  設(shè)與橢圓C交點(diǎn)為

消去得 

    

  由①得

    

綜上所述

 


同步練習(xí)冊(cè)答案