解: 由題意.得為銳角.. 查看更多

 

題目列表(包括答案和解析)

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;

(2)異面直線所成角的大小(結(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問(wèn)中,由題意,,故

從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,,

從而體積.

(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問(wèn)中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問(wèn)中,作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

 [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足。

(Ⅰ)求角C的大。

(Ⅱ)求的最大值。

 (Ⅰ)解:由題意可知

absinC=,2abcosC.

所以tanC=.

因?yàn)?<C<,

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

當(dāng)△ABC為正三角形時(shí)取等號(hào),

所以sinA+sinB的最大值是.

 

 


 [番茄花園1]1.

查看答案和解析>>

設(shè)數(shù)列的各項(xiàng)均為正數(shù).若對(duì)任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

(1)若數(shù)列是“J2型”數(shù)列,且,,求;

(2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

【解析】1)中由題意,得,,…成等比數(shù)列,且公比,

所以.

(2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得

,…成等比數(shù)列,設(shè)公比為;

,…成等比數(shù)列,設(shè)公比為;

…成等比數(shù)列,設(shè)公比為;

 

查看答案和解析>>

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問(wèn)中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

第二問(wèn)中設(shè),由,消去x,得

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>


同步練習(xí)冊(cè)答案