以為坐標(biāo)原點(diǎn).分別以..所在直線為軸.軸.軸.建立空間直角坐標(biāo)系. --2分 查看更多

 

題目列表(包括答案和解析)

(12分)設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPMkPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

圍.

查看答案和解析>>

(14分)設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

 

查看答案和解析>>

(14分)設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PMPN的斜率都存在,并記為kPM、kPN時(shí),那么kPMkPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

 

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:數(shù)學(xué)公式=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,數(shù)學(xué)公式)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線數(shù)學(xué)公式寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:(a>b>0)的左、右兩個(gè)焦點(diǎn)。
(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值,試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明。

查看答案和解析>>


同步練習(xí)冊(cè)答案