題目列表(包括答案和解析)
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)< 時,求實數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
在△ABC中,為三個內(nèi)角為三條邊,且
(I)判斷△ABC的形狀;
(II)若,求的取值范圍.
【解析】本題主要考查正余弦定理及向量運(yùn)算
第一問利用正弦定理可知,邊化為角得到
所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。
第二問中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。
(2)
若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由,所以
第二問中, 由題意得方程有兩實根
設(shè)所以關(guān)于m的方程在有兩實根,
即函數(shù)與函數(shù)的圖像在上有兩個不同交點(diǎn),從而得到t的范圍。
解(I)由題意得,由,所以 (6分)
(II)由題意得方程有兩實根
設(shè)所以關(guān)于m的方程在有兩實根,
即函數(shù)與函數(shù)的圖像在上有兩個不同交點(diǎn)。
給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果. .
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().
(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時,若,
求證:;
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時,若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:
“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com