題目列表(包括答案和解析)
水車是一種利用水流的動力進行灌溉的工具,圖1-6-5是一個水車的示意圖,它的直徑為3 m,其中心(即圓心)O距水面1.2 m.如果水車每4 min逆時針轉(zhuǎn)3圈,在水車輪邊緣上取一點P,我們知道在水車勻速轉(zhuǎn)動時,P點距水面的高度h(m)是一個變量,顯然,它是時間t(s)的函數(shù).我們知道,h與t的函數(shù)關(guān)系反映了這個周期現(xiàn)象的規(guī)律.為了方便,不妨從P點位于水車與水面交點Q時開始記時(t=0).
首先,設(shè)法用解析式表示出這個函數(shù)關(guān)系,并用“五點法”作出這個函數(shù)在一個周期內(nèi)的簡圖.
圖1-6-5
其次,我們討論如果雨季河水上漲或旱季河流水量減少時,所求得的函數(shù)解析式中的參數(shù)將發(fā)生哪些變化?若水車轉(zhuǎn)速加快或減慢,函數(shù)解析式中的參數(shù)又會受到怎樣的影響?
水車問題.
水車是一種利用水流的動力進行灌溉的工具,下圖是一個水車的示意圖,它的直徑為3 m,其中心(即圓心)O距水面1.2 m.如果水車每4 min逆時針轉(zhuǎn)3圈,在水車輪邊緣上取一點P,我們知道在水車勻速轉(zhuǎn)動時,P點距水面的高度h(m)是一個變量,顯然,它是時間t(s)的函數(shù).我們知道,h與t的函數(shù)關(guān)系反映了這個周期現(xiàn)象的規(guī)律.為了方便,不妨從P點位于水車與水面交點Q時開始記時(t=0).
首先,設(shè)法用解析式表示出這個函數(shù)關(guān)系,并用“五點法”作出這個函數(shù)在一個周期內(nèi)的簡圖.
其次,我們討論如果雨季河水上漲或旱季河流水量減少時,所求得的函數(shù)解析式中的參數(shù)將發(fā)生哪些變化?若水車轉(zhuǎn)速加快或減慢,函數(shù)解析式中的參數(shù)又會受到怎樣的影響?
你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?
你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?
解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.
這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.這種思維方法叫化歸法.
化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.
1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.對此,談?wù)勀愕目捶ǎ?/P>
2.我國古代數(shù)學研究一直處于領(lǐng)先地位,現(xiàn)在有所落后了,對此,我們不應(yīng)只感嘆古人的偉大,而更應(yīng)該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?
已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。
第一問中,可設(shè)橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標準方程為
第二問中,
假設(shè)存在這樣的直線,設(shè),MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標準方程為
(Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
繼薩凱里之后,大概又過了半個世紀.歐洲“數(shù)學之王”高斯的至友匈牙利數(shù)學家伏爾夫剛·鮑里埃,終身從事證明“第五公設(shè)”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時間在上面,一輩子也證不出這個命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會剝奪你生活的一切時間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認真吸取前人失敗的教訓,初出茅廬就大顯身手.小鮑耶匠心獨運,大膽創(chuàng)新,決然將“第五公設(shè)”換成他自身的否定.從“三角形三個內(nèi)角和小于180°”這一令人瞠目結(jié)舌的假設(shè)出發(fā),建立起一套完整協(xié)調(diào)、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學創(chuàng)見向父親報捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會感到驚訝.但是,我不能不這樣說,因為稱贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結(jié)尾還開誠布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因為我怕引某些人的喊聲,現(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當代數(shù)學大師恐怕做夢也沒想到,他這封推心置腹的信,竟會一舉撞毀初露鋒芒的數(shù)壇新星!
高斯的復信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認為高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán).為此,他痛心疾首,認為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究.
1.對于“數(shù)學之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?
2.躊躇滿志的鮑耶誤認為“高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán)”,進而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com