又在上點(diǎn)處切線可計(jì)算得.即 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,函數(shù)y=2cos(ωx+θ)(x∈R,0≤θ≤
π
2
)
的圖象與y軸交于點(diǎn)(0,
3
)
,且在該點(diǎn)處切線的斜率為-2.
(1)求θ和ω的值;
(2)已知點(diǎn)A(
π
2
,0)
,點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=
3
2
,x0∈[
π
2
,π]
時(shí),求x0的值.

查看答案和解析>>

已知f(x)=2cos(ωx+θ),(x∈R,0≤θ≤
π
2
)
,g(x)=ex-x2+2ax-1,(x∈R,a為實(shí)數(shù)),y=f(x)的圖象與y軸交于點(diǎn)(0,
3
)
,且在該點(diǎn)處切線的斜率為-2.
(I)若點(diǎn)A(
π
2
,0)
,點(diǎn)P是函數(shù)y=f(x)圖象上一點(diǎn),Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=
3
2
,x0∈[
π
2
,π]
時(shí),求x0的值;
(II)當(dāng)a>1+ln2時(shí),試問:是否存在曲線y=f(x)與y=g(x)的公切線?并證明你的結(jié)論.

查看答案和解析>>

(2012•豐臺(tái)區(qū)二模)已知函數(shù)f(x)=lnx,g(x)=ax+
b
x
,兩函數(shù)圖象的交點(diǎn)在x軸上,且在該點(diǎn)處切線相同.
(Ⅰ)求a,b的值;
(Ⅱ)求證:當(dāng)x>1時(shí),f(x)<g(x)成立;
(Ⅲ)證明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)
(n∈N*).

查看答案和解析>>

已知函數(shù)f(x)=(ax2+bx+c)e-x的圖象過點(diǎn)(0,2a),且在該點(diǎn)處切線的傾斜角為45°
(1)用a表示b,c;(2)若f(x)在[2,+∞)上為單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

(本小題滿分12分)

如圖,函數(shù)

圖象與y軸交于點(diǎn)(0,),且在該點(diǎn)處切線的斜

率為一2.

   (1)求θ和ω的值;

   (2)已知點(diǎn)A(,0),點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0x0∈[,π]時(shí),求x0的值.

 

查看答案和解析>>

1.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

3.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

(2)隨機(jī)變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機(jī)變量的分布列為

 

2

3

4

P

                    …………………………10分

4.(必做題)(本小題滿分10分)

(1),,, 

              ……………………………………3分

(2)平面BDD1的一個(gè)法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個(gè)法向量

  ∴所求的余弦值為    ……6分

(3)設(shè)

,由

,

    

當(dāng)時(shí),

當(dāng)時(shí),∴   ……………………………………10分


同步練習(xí)冊(cè)答案