將代入.解得.即.. 查看更多

 

題目列表(包括答案和解析)

如圖,為⊙的直徑,,于點(diǎn),,

(1)求證:;

(2)求的長(zhǎng);

(3)延長(zhǎng),使得,連接,試判斷直 線(xiàn)與⊙的位置關(guān)系,并說(shuō)明理由.

【解析】(1)根據(jù)AB=AC,可得∠ABC=∠C,利用等量代換可得∠ABC=∠D然后即可證明△ABE∽△ADB.

(2)根據(jù)△ABE∽△ADB,利用其對(duì)應(yīng)邊成比例,將已知數(shù)值代入即可求得AB的長(zhǎng).

(3)連接OA,根據(jù)BD為⊙O的直徑可得∠BAD=90°,利用勾股定理求得BD,然后再求證∠OAF=90°即可

 

查看答案和解析>>

仔細(xì)閱讀下面解方程組得方法,然后解決有關(guān)問(wèn)題:
解方程組
19x+18y=17    ①
17x+16y=15    ②
 時(shí),如果直接消元,那將時(shí)很繁瑣的,若采用下面的解法,則會(huì)簡(jiǎn)單很多.
解:①-②,得:2x+2y=2,即x+y=1 ③
③×16,得:16x+16y=16  ④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴方程組的解為:
x=-1
y=2

(1)請(qǐng)你采用上述方法解方程組:
2014x+2013y=2012
2012x+2011y=2010

(2)請(qǐng)你采用上述方法解關(guān)于x,y的方程組
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a≠b)

查看答案和解析>>

仔細(xì)閱讀下面解方程組得方法,然后解決有關(guān)問(wèn)題:
解方程組
19x+18y=17①
17x+16y=15②
時(shí),如果直接消元,那將時(shí)很繁瑣的,若采用下面的解法,則會(huì)簡(jiǎn)單很多.
解:①-②,得:2x+2y=2,即x+y=1③
③×16,得:16x+16y=16④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴方程組的解為:
x=-1
y=2

(1)請(qǐng)你采用上述方法解方程組:
2014x+2013y=2012
2012x+2011y=2010

(2)請(qǐng)你采用上述方法解關(guān)于x,y的方程組
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a≠b)

查看答案和解析>>

有一個(gè)算式分子都是整數(shù),滿(mǎn)足≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書(shū)中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+,用3+代替x,得x=3+=3+.反復(fù)若干次用3+代替x,就得到x=形如上式右邊的式子稱(chēng)為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把忽略不計(jì),例如,當(dāng)忽略x=3+中的時(shí),就得到x=3;當(dāng)忽略x=3+中的時(shí),就得到x=3+;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

閱讀理解:若為整數(shù),且三次方程有整數(shù)解c,則將c代入方程得:,移項(xiàng)得:,即有:

,由于都是整數(shù),所以c是m的因數(shù).

上述過(guò)程說(shuō)明:整數(shù)系數(shù)方程的整數(shù)解只可能是m的因數(shù).

  例如:方程中-2的因數(shù)為±1和±2,將它們分別代入方程進(jìn)行驗(yàn)證得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.

解決問(wèn)題:(1)根據(jù)上面的學(xué)習(xí),請(qǐng)你確定方程的整數(shù)解只可能是哪幾個(gè)整數(shù)?

(2)方程是否有整數(shù)解?若有,請(qǐng)求出其整數(shù)解;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案