題目列表(包括答案和解析)
(本小題滿分13分)
如圖, 是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.
(本小題滿分13分)
如圖,、是通過某城市開發(fā)區(qū)中心的兩條南北和東西走向的街道,連接、兩地之間的鐵路線是圓心在上的一段圓。酎c(diǎn)在點(diǎn)正北方向,且,點(diǎn)到、的距離分別為和.
(Ⅰ)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(Ⅱ)若該城市的某中學(xué)擬在點(diǎn)正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)的距離大于,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).
(本小題滿分13 分)
如圖(1)是一正方體的表面展開圖,MN 和PB 是兩條面對(duì)角線,請(qǐng)?jiān)趫D(2)的正方體中將MN 和PB 畫出來,并就這個(gè)正方體解決下面問題。
(1)求證:MN//平面PBD;
(2)求證:AQ⊥平面PBD;
(3)求二面角P—DB—M 的大。
(本小題滿分13分)如圖所示,在四棱臺(tái)中, 底面ABCD是正方形,且底面 , .
(1)求異面直線與所成角的余弦值;
(2)試在平面中確定一個(gè)點(diǎn),使得平面;
(3)在(2)的條件下,求二面角的余弦值.
(本小題滿分13分)如圖所示,在四棱臺(tái)中, 底面ABCD是正方形,且底面 , .
(1)求異面直線與所成角的余弦值;
(2)試在平面中確定一個(gè)點(diǎn),使得平面;
(3)在(2)的條件下,求二面角的余弦值.
一、選擇題(每小題5 分,共40 分)
DACDA DBA
二、填空題(每小題5 分,共35分)
9. 10.400 11.180 12.②④
13. 14.(i)(3分) (ii)(2分)
15.(i)(3分); (ii) (2分)
16.(1)
當(dāng)
……………………4分
(2)令 ………………6分
解得:
所以,的單調(diào)遞增區(qū)間是…………8分
(3)由,……………………10分
所以,
解得:
所以,的取值集合……12分
17.解:(1)坐A 班車的三人中恰有2 人正點(diǎn)到達(dá)的概率為
P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)
(2)記“A 班車正點(diǎn)到達(dá)”為事件M,“B 班車正點(diǎn)到達(dá)冶為事件N
則兩人中至少有一人正點(diǎn)到達(dá)的概率為
P = P(M?N)+ P(M?)+ P(?N)
= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)
18.解:由已知得
所以數(shù)列{}是以1為首項(xiàng),公差為1的等差數(shù)列;(2分)
即=1+…………………………4分
(2)由(1)知 ……………………6分
…………………………8分
……………………10分
所以:…………………………12分
19.解:M、N、Q、B的位置如右圖示。(正確標(biāo)出給1分)
(1)∵ND//MB且ND=MB
∴四邊形NDBM為平行四邊形
∴MN//DB………………3分
∴BD平面PBD,MN
∴MN//平面PBD……………………4分
(2)∵QC⊥平面ABCD,BD平面ABCD,
∴BD⊥QC……………………5分
又∵BD⊥AC,
∴BD⊥平面AQC…………………………6分
∵AQ面AQC
∴AQ⊥BD,同理可得AQ⊥PB,
∵BDPD=B
∴AQ⊥面PDB……………………………8分
|