由韋達(dá)定理得.. 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為,離心率為2.

(1)求雙曲線的漸近線方程;

(2)過(guò)點(diǎn)能否作出直線,使與雙曲線交于、兩點(diǎn),且,若存在,求出直線方程,若不存在,說(shuō)明理由.

【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側(cè)的1為0,解此方程可得雙曲線的漸近線方程.

(2)設(shè)直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗(yàn)證判別式是否大于零即可.

 

查看答案和解析>>

已知過(guò)點(diǎn)的動(dòng)直線與拋物線相交于兩點(diǎn).當(dāng)直線的斜率是時(shí),

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

【解析】(1)B,C,當(dāng)直線的斜率是時(shí),

的方程為,即                                (1’)

聯(lián)立  得,         (3’)

由已知  ,                    (4’)

由韋達(dá)定理可得G方程為            (5’)

(2)設(shè),BC中點(diǎn)坐標(biāo)為               (6’)

 由       (8’)

    

BC中垂線為             (10’)

                  (11’)

 

查看答案和解析>>

過(guò)拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

 

查看答案和解析>>

設(shè)橢圓E: (a,b>0)過(guò)M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說(shuō)明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>

設(shè)橢圓E: (a,b>0)過(guò)M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說(shuō)明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案