(2)由已知共線.所以 以為直徑的圓的方程:.由得 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知⊙O:x2+y2=1和定點(diǎn)A(2,1),由⊙O外一點(diǎn)P(a,b)向⊙O引切線PQ,切點(diǎn)為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長(zhǎng)的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點(diǎn),試求半徑取最小值時(shí)的⊙P方程.

查看答案和解析>>

已知⊙O:x2+y2=1和定點(diǎn)A(2,1),由⊙O外一點(diǎn)P(a,b)向⊙O引切線PQ,切點(diǎn)為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長(zhǎng)的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點(diǎn),試求半徑取最小值時(shí)的⊙P方程.

查看答案和解析>>

已知⊙O:x2+y2=1和定點(diǎn)A(2,1),由⊙O外一點(diǎn)P(a,b)向⊙O引切線PQ,切點(diǎn)為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長(zhǎng)的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點(diǎn),試求半徑取最小值時(shí)的⊙P方程.

查看答案和解析>>

已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案