整理得..解得或. 查看更多

 

題目列表(包括答案和解析)

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

已知數(shù)列{an}中a1=1,且P(anan+1)在直線x-y+1=0上,

(1)

求數(shù)列{an}的通項(xiàng)公式

(2)

,求Tn的最小值

(3)

,Sn是{bn}的前n項(xiàng)和,問:是否存在關(guān)于n的整式g(n)使得S1+S2+…+Sn-1=(Sn-1)g(n)對一切n≥2的自然n恒成立說明理由.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知定義在(—1,1)上的函數(shù)滿足,且對時(shí),有

(1)

判斷在(—1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{}的通項(xiàng)公式;

(3)

設(shè)為數(shù)列{}的前項(xiàng)和,問是否存在正整數(shù),使得對任意的,有成立?若存在,求出的最小值,若不存在,則說明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知數(shù)列{an}中,a1=1且點(diǎn)P(an,an+1)(n∈N*)在直線x-y+1=0上.

(1)

求數(shù)列{an}的通項(xiàng)an

(2)

若函數(shù)

求證:f(n)≥

(3)

設(shè),Sn表示數(shù)列{bn}的前項(xiàng)和.試問:是否存在關(guān)于n的整式g(n),使得S1+S2+S3…+Sn-1=(Sn-1)·g(n)對于一切不小于2的自然數(shù)n恒成立?若不存在,試說明理由.若存在,寫出g(n)的解析式,并加以證明

查看答案和解析>>

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

 

6

 

女生

10

 

 

合計(jì)

 

 

48

已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.

(1)請將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);

(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;

(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

下面的臨界值表供參考:

P(χ2x0)

P(K2k0)

0.10

0.05

0.010

0.005

x0(k0)

2.706

3.841

6.635

7.879

 

(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

 

查看答案和解析>>


同步練習(xí)冊答案