(Ⅱ)根據(jù)點(diǎn)到直線(xiàn)的距離公式和①式知.點(diǎn)到的距離分別為 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xoy中,已知曲線(xiàn)C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn)l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線(xiàn)C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的、2倍后得到曲線(xiàn)C2,試寫(xiě)出直線(xiàn)l的直角坐標(biāo)方程和曲線(xiàn)C2的參數(shù)方程.

(Ⅱ)在曲線(xiàn)C2上求一點(diǎn)P,使點(diǎn)P到直線(xiàn)l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標(biāo)與普通方程的互化,將直線(xiàn)l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點(diǎn)到直線(xiàn)的距離公式表示出距離,求最值.

 

查看答案和解析>>

設(shè)拋物線(xiàn)>0)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點(diǎn)在同一條直線(xiàn)上,直線(xiàn)平行,且只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線(xiàn)的定義、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、點(diǎn)到直線(xiàn)距離公式、線(xiàn)線(xiàn)平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線(xiàn)軸的焦點(diǎn)為E,圓F的半徑為

則|FE|=,=,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線(xiàn)定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線(xiàn)上, ∴是圓的直徑,,

由拋物線(xiàn)定義知,∴,∴的斜率為或-,

∴直線(xiàn)的方程為:,∴原點(diǎn)到直線(xiàn)的距離=,

設(shè)直線(xiàn)的方程為:,代入得,

只有一個(gè)公共點(diǎn), ∴=,∴,

∴直線(xiàn)的方程為:,∴原點(diǎn)到直線(xiàn)的距離=,

∴坐標(biāo)原點(diǎn)到,距離的比值為3.

解析2由對(duì)稱(chēng)性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)得:

     得:,直線(xiàn)

     切點(diǎn)

     直線(xiàn)

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案