(2)當l的斜率為時.拋物線上是否存在點C.使為直角三角形且B為直角?若存在.求出所有的點C,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

設(shè)拋物線y=x2的焦點為F,準線為l,過點F的直線斜率為k且與拋物線交于A、B兩點,P在準線l上.

(Ⅰ)當k=1且直線產(chǎn)PA與PB相互垂直時,求點P的坐標;

(Ⅱ)設(shè)P(k,),試問是否存在常數(shù)λ,使等式恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

設(shè)拋物線的焦點為F,準線為l,過點F的直線斜率為k且與拋物線交于A、B兩點,P在準線l上.

(Ⅰ)當k=1且直線PA與PB相互垂直時,求點P的坐標;

(Ⅱ)設(shè),試問是否存在常數(shù)λ,使等式恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

中心在原點的雙曲線C1的一個焦點與拋物線C2:y2=8x的焦點F重合,拋物線C2的準線l與雙曲線C1的一個交點為A,且|AF|=5.
(Ⅰ)求雙曲線C1的方程;
(Ⅱ)若過點B(0,1)的直線m與雙曲線C1相交于不同兩點M,N,且
.
MB
.
BN

①求直線m的斜率k的變化范圍;
②當直線m的斜率不為0時,問在直線y=x上是否存在一定點C,使
.
OB
⊥(
.
CM
.
CN
)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

中心在原點的雙曲線C1的一個焦點與拋物線C2:y2=8x的焦點F重合,拋物線C2的準線l與雙曲線C1的一個交點為A,且|AF|=5.
(Ⅰ)求雙曲線C1的方程;
(Ⅱ)若過點B(0,1)的直線m與雙曲線C1相交于不同兩點M,N,且數(shù)學(xué)公式數(shù)學(xué)公式
①求直線m的斜率k的變化范圍;
②當直線m的斜率不為0時,問在直線y=x上是否存在一定點C,使數(shù)學(xué)公式⊥(數(shù)學(xué)公式數(shù)學(xué)公式)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

中心在原點的雙曲線C1的一個焦點與拋物線C2:y2=8x的焦點F重合,拋物線C2的準線l與雙曲線C1的一個交點為A,且|AF|=5.
(Ⅰ)求雙曲線C1的方程;
(Ⅱ)若過點B(0,1)的直線m與雙曲線C1相交于不同兩點M,N,且
①求直線m的斜率k的變化范圍;
②當直線m的斜率不為0時,問在直線y=x上是否存在一定點C,使⊥()?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

 

1.B  2.B  3.C  4.C  5.B  6.D  7.A  8.C  9.D  10.A

11.31003              12.60          13.      14.  15.①②⑤

16.解:(1)設(shè)“取出兩個紅球”為事件A,“取出一紅一白兩個球”為事件B,則

……2分

由題意得

則有,可得……4分

,∴m為奇數(shù)……6分

(2)設(shè)“取出兩個白球”為事件C,則……7分

由題意知,即有
可得到,從而m+n為完全平方數(shù)……9分

又m≥n≥4及m+n≤20得9≤m+n≤20

得到方程組:;

解得:,(不合題意舍去)……11分

故滿足條件的數(shù)組(m, n)只有一組(10,6)……12分

17.解:(1)∵,……2分

……4分

由于,故……6分

(2)由……8分

……10分

當且僅當tanA=tanB,即A=B時,tanC取得最大值.

所以C的最大值為,此時為等腰三角形. ……12分

18.解:設(shè)裁員x人,可獲得的經(jīng)濟效益為y萬元,

……4分

依題意

又140<2a<420, 70<a<210. ……6分

(1)當時,x=a-70, y取到最大值;……8分

(2)當時,, y取到最大值;……10分

答:當時,裁員a-70人;當時,裁員人……12分

19.解法一:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得底面ABCD. 因為SA=SB,所以AO=BO. 又,故為等腰直角三角形, 由三垂線定理,得

(2)由(1)知,依題設(shè),故,由,得 所以的面積 連結(jié)DB,得的面積 設(shè)D到平面SAB的距離為h,由,

,解得

設(shè)SD與平面SAB所成角為,則 所以直線SD與平面SAB所成的角為

解法二:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得平面ABCD. 因為SA=SB,所以AO=BO. 又,為等腰直角三角形,

如圖,以O(shè)為坐標原點,OA為x軸正向,建立直角坐標系O―xyz, ,所以

(2)取AB中點E,. 連結(jié)SE,取SE中點G,連結(jié)OG,

,OG與平面SAB內(nèi)兩條相交直線SE、AB垂直,所以平面SAB.的夾角記為,SD與平面SAB所成的角記為,則互余.

所以直線SD與平面SAB所成的角為

20.解:(1)∵焦點F為(1,0),過點F且與拋物線交于點A、B的直線可設(shè)為,代入拋物線得:,則有……2分

進而……4分

,

為鈍角,故不是直角三角形.……6分

(2)由題意得AB的方程為,

代入拋物線,求得……8分

假設(shè)拋物線上存在點,使為直角三角形且C為直角,此時,以AC為直徑的圓的方程為,將A、B、C三點的坐標代入得:

整理得:……10分

解得對應(yīng)點B,對應(yīng)點C……12分

則存在使為直角三角形.

故滿足條件的點C有一個:……13分

 

∴當時,h(t)單調(diào)遞增,∴h(t)>h(1)=0

于是……②

由①、②可知……10分

所以,,即……11分

(3)由(2)可知

中令n=1, 2, 3, …, 2007,并將各式相加得

……14分

 

 


同步練習(xí)冊答案