20.已知雙曲線的一個焦點為, 且, 一條漸近線方程為, 其中是以4為首項的正數(shù)數(shù)列. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分) 已知雙曲線的兩個焦點為的曲線C上.

  (Ⅰ)求雙曲線C的方程;

  (Ⅱ)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點EF,若△OEF的面積為求直線l的方程

查看答案和解析>>

(本小題滿分13分)

已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標原點,又,過點F的直線與雙曲線右交于點M、N,點P為點M關(guān)于軸的對稱點。

(1)求雙曲線的方程;

(2)證明:B、P、N三點共線;

(3)求面積的最小值。

 

查看答案和解析>>

(本小題滿分13分)已知雙曲線的焦點為,且離心率為2;

(Ⅰ)求雙曲線的標準方程;

(Ⅱ)若經(jīng)過點的直線交雙曲線兩點,且的中點,求直線的方程。

 

 

查看答案和解析>>

(本小題滿分13分)

已知雙曲線的右焦點為,過點的動直線與雙曲線相交于兩點,點的坐標是

(I)證明為常數(shù);

(II)若動點滿足(其中為坐標原點),求點的軌跡方程.

 

查看答案和解析>>

(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.

(1)求雙曲線的離心率;
(2)如圖,為坐標原點,動直線分別交直線兩點(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由.

查看答案和解析>>

高考資源網(wǎng)版權(quán)所有

一、DBCCC  DCADB

二、11.72  12.  13.  14.  15.

三、16.(Ⅰ).

,∴,∴,∴當時,f(A)取最小值.

(Ⅱ)由(Ⅰ)知, 時, .于是,

.

17.(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,且,

故取出的4個球均為黑球的概率為

(Ⅱ)設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件互斥,

,

故取出的4個球中恰有1個紅球的概率為

(Ⅲ)取出的4個球中紅球的個數(shù)為0,1,2,3時的概率分別記為.由(Ⅰ),(Ⅱ)得,.從而

18.(I)∵AB∥CD,AD=DC=CB=a,∴四邊形ABCD是等腰梯形.設(shè)AC交BD于N,連EN.

∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,

∴AC=,AB=2a,=90°.

又四邊形ACEF是矩形,

∴AC⊥平面BCE.∴AC⊥BE.

(II)∵平面ACEF⊥平面ABCD, EC⊥AC,

∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,

∴AF⊥AD,而AF=CE,AD=CD,

∴Rt△≌Rt△,DE=DF.

過D作DG⊥EF于G,則G為EF的中點,于是EG=.

在Rt△中,,∴.∴.

    設(shè)所求二面角大小為,則由,得,,

www.ks5u.com

.21.(I)由于橢圓過定點A(1,0),于是a=1,c=.

,∴.

(Ⅱ)解方程組,得.

,∴.

(Ⅲ)設(shè)拋物線方程為:.

又∵,∴.

,得.

.

內(nèi)有根且單調(diào)遞增,

.

 

 

 

 


同步練習冊答案