(Ⅰ)同學(xué)被選取, 查看更多

 

題目列表(包括答案和解析)

從某學(xué)校高三年級共1000名男生中隨機(jī)抽取50人測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm到195cm之間,將測量結(jié)果按如下方式分成八組,第一組[155,160),第二組[160,165),…,第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分、其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估算高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(2)學(xué)校決定讓這50人在運(yùn)動會上組成一個(gè)高旗隊(duì),在這50人中要選身高在185cm以上(含185cm)的兩人作為隊(duì)長,求這兩人在同一組的概率.

查看答案和解析>>

從某學(xué)校高三年級共1000名男生中隨機(jī)抽取50人測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm到195cm之間,將測量結(jié)果按如下方式分成八組,第一組[155,160),第二組[160,165),…,第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分、其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估算高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(2)學(xué)校決定讓這50人在運(yùn)動會上組成一個(gè)高旗隊(duì),在這50人中要選身高在185cm以上(含185cm)的兩人作為隊(duì)長,求這兩人在同一組的概率.

查看答案和解析>>

從某學(xué)校高三年級共1000名男生中隨機(jī)抽取50人測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm到195cm之間,將測量結(jié)果按如下方式分成八組,第一組[155,160),第二組[160,165),…,第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分、其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估算高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(2)學(xué)校決定讓這50人在運(yùn)動會上組成一個(gè)高旗隊(duì),在這50人中要選身高在185cm以上(含185cm)的兩人作為隊(duì)長,求這兩人在同一組的概率.

查看答案和解析>>

(本題6分)某學(xué)校組織課外活動小組,其中三個(gè)小組的人員分布如下表(每名同學(xué)只參加一個(gè)小組):

 
棋類小組
書法小組
攝影小組
高中
a
6
12
初中
7
4
18
學(xué)校要對這三個(gè)小組的活動效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從小組成員中抽取6人,結(jié)果攝影小組被抽出3人。
(Ⅰ)求a的值;
(Ⅱ)從書法小組的人中,隨機(jī)選出3人參加書法比賽,求這3人中初、高中學(xué)生都有的概率。

查看答案和解析>>

(本題6分)某學(xué)校組織課外活動小組,其中三個(gè)小組的人員分布如下表(每名同學(xué)只參加一個(gè)小組):
 
棋類小組
書法小組
攝影小組
高中
a
6
12
初中
7
4
18
學(xué)校要對這三個(gè)小組的活動效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從小組成員中抽取6人,結(jié)果攝影小組被抽出3人。
(Ⅰ)求a的值;
(Ⅱ)從書法小組的人中,隨機(jī)選出3人參加書法比賽,求這3人中初、高中學(xué)生都有的概率。

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

B

B

A

D

C

D

B

C

A

D

二、填空題(每小題4分,共16分)

13、120; 14、20; 15、;16、2.

三、解答題

17、解:(Ⅰ)由正弦定理得,

  ……2分

,因?yàn)?sub>,所以,得   ……3分,因?yàn)?sub>,

所以,又為三角形的內(nèi)角,所以      ……2分

(Ⅱ),由 ……2分

,

,所以當(dāng)時(shí),取最大值  ……3分

 

18、解:(Ⅰ)設(shè)公差為,由,得

       ,因?yàn)閿?shù)列{}的各項(xiàng)均為正數(shù),

     所以得  ……3分  又,所以 ……2分

      由,  ……1分

(Ⅱ)由(Ⅰ)得……2分

  于是

         ……4分

19、(Ⅰ)如圖,連結(jié),因?yàn)?sub>

分別是棱、的中點(diǎn),

所以……2分

因?yàn)?sub>平面,不在平面

內(nèi),所以平面 ……3分

(Ⅱ)解:因?yàn)?sub>平面,

所以,因?yàn)?sub>是直角梯形,

,所以,又,所以平面,即是三棱錐的高  ……4分  

因?yàn)?sub>是棱的中點(diǎn),所以,

于是三棱錐的體積  ……3分

20、解:從5名同學(xué)、、、中選出3名同學(xué)的基本事件空間為:

  

,共含有10個(gè)基本事件   ……3分

(Ⅰ)設(shè)事件為“同學(xué)被選取”,則事件包含6個(gè)基本事件,

      事件發(fā)生的概率為   ……3分

(Ⅱ)設(shè)事件為“同學(xué)和同學(xué)都被選取”,則事件包含3個(gè)基本事件,

      事件發(fā)生的概率為    ……3分

(Ⅲ)設(shè)事件為“同學(xué)和同學(xué)中至少有一個(gè)被選取”,則事件包含9個(gè)基本事件,事件發(fā)生的概率為   ……3分

 

 

21、解:(Ⅰ)由  ……2分

由點(diǎn),0),(0,)知直線的方程為,

于是可得直線的方程為    ……2分

因此,得,,,

所以橢圓的方程為   ……2分

(Ⅱ)由(Ⅰ)知、的坐標(biāo)依次為(2,0)、

因?yàn)橹本經(jīng)過點(diǎn),所以,得,

即得直線的方程為  ……2分

因?yàn)?sub>,所以,即   ……1分

設(shè)的坐標(biāo)為,則

,即直線的斜率為4    ……2分

又點(diǎn)的坐標(biāo)為,因此直線的方程為 ……1分

22、解:(Ⅰ),因?yàn)?sub>時(shí)取得極值,

所以是方程的根,即 ……2分

,又因?yàn)?sub>,

所以的取值范圍是    ……2分

(Ⅱ)當(dāng)時(shí),, ,

      因?yàn)?sub>,當(dāng)時(shí),,內(nèi)單調(diào)遞減……2分

      當(dāng)時(shí),,令解得

     ,令,解得,

     于是當(dāng)時(shí),內(nèi)單調(diào)遞增,

內(nèi)單調(diào)遞減   ……2分

(Ⅲ)因?yàn)楹瘮?shù)時(shí)有極值,所以有

消去,解之得,又,所以取

此時(shí)  ……2分

因此,,

可得當(dāng)時(shí)取極大值,

當(dāng)時(shí)取極小值  ……2分

如圖,方程有三個(gè)不相等的實(shí)數(shù)根,等價(jià)于直線與曲線

有三個(gè)不同的交點(diǎn),由圖象得  ……2分

 

 

 

 

 


同步練習(xí)冊答案