平面EFG//平面PAB, --4分 查看更多

 

題目列表(包括答案和解析)

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大。

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、,

,又點(diǎn),∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,

,∴平面.   ………8分

(Ⅲ)∵,∴平面

為面的法向量.∵,,

為平面的法向量.∴

的夾角為,即二面角的大小為

 

查看答案和解析>>

三棱柱中,側(cè)棱與底面垂直,,分別是,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

【解析】第一問利連結(jié),∵M(jìn),N是AB,的中點(diǎn)∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié),

,又N中的中點(diǎn),∴

相交于點(diǎn)C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又.得到結(jié)論。

⑴連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,

∴四邊形是正方形.∴

.連結(jié),

,又N中的中點(diǎn),∴

相交于點(diǎn)C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.

(Ⅰ)求證:CN∥平面AMB1;

(Ⅱ)求證: B1M⊥平面AMG.

【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

設(shè):AC=2a,則

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).
(1)求證:平面PAB∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明.

查看答案和解析>>

精英家教網(wǎng)如圖,PA⊥平面ABCD,ABCD為正方形,,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角的余弦值;
(3)求點(diǎn)A到面EFG的距離.

查看答案和解析>>


同步練習(xí)冊(cè)答案